Apache Web Server
The Apache product includes software developed by the Apache Software Foundation (http://www.apache.org). The Apache HTTP server is a robust and commercial-grade open source Web server used by the majority of websites on the Internet. The Red Hat Linux distribution includes Apache, as well as a number of additional modules which are designed to enhance the functionality of the server and add strong encryption capabilities. Apache's default configuration should work for most users. You may never need to change any of Apache's configuration directives. If you do want to change any of the default configuration options, you will need to know what some of the options are and where to find them. This chapter covers how to use and configure the Apache Web server.

After you have installed the apache package, the Apache Web server's documentation is available by installing the apache-manual package and pointing a Web browser to http://localhost/manual/ or you can browse the Apache documentation available on the Web at http://httpd.apache.org/docs/. The Apache Web server's documentation contains a full list and complete descriptions of all of Apache's configuration options. For your convenience, this chapter provides short descriptions of the configuration directives used in the version of Apache provided with Red Hat Linux.

Starting and Stopping httpd
During the installation process, a Bourne shell script named httpd was saved in /etc/rc.d/init.d/. To manually stop, start, or check the status of your server, run httpd with either stop, start, or status as an argument.

To start your server, type the command:

	/sbin/service httpd start

If you are running Apache as a secure server, you will be prompted to fill in your password. After you type it in, your server will start.

To stop your server, type the command:

	/sbin/service httpd stop

The command restart is a shorthand way of stopping and then starting your server. The restart command explicitly stops and then starts your server. You will be prompted for your password if you are running Apache as a secure server. The restart command looks like the following:

	/sbin/service httpd restart

If you just finished editing something in your httpd.conf file, you do not need to explicitly stop and start your server. Instead, you can use the reload command. When you use reload, you will not need to type in your password. Your password will remain cached across reloads, but it will not be cached between stops and starts. The reload command looks like the following:

	/sbin/service httpd reload

By default, the httpd process will start automatically when your machine boots. If you are running Apache as a secure server, you will be prompted for the secure server's password after the machine boots, unless you generated a key for your secure server without password protection.

Configuration Directives in httpd.conf
The Apache Web server configuration file is /etc/httpd/conf/httpd.conf. The httpd.conf file is well-commented and somewhat self-explanatory. Its default configuration will work for most people, so you should not need to change the directives in httpd.conf. However, you may want to be familiar with the most important configuration options.

The empty srm.conf and access.conf files are also in the /etc/httpd/conf/ directory. The srm.conf and access.conf files were formerly used, along with httpd.conf, as configuration files for Apache. If you need to configure Apache, edit httpd.conf and then either reload, or stop and start the httpd process..

Before you edit httpd.conf, you should first copy the original file to something like httpd.conf-old, for example. By creating a backup, you can recover potential mistakes made while editing the new configuration file.

If you do make a mistake, and your Web server does not work correctly, first review what you have recently edited in httpd.conf. Make sure that you did not make a typo. The next place to look is your Web server's error log (/var/log/httpd/error_log). The error log may not be easy to interpret, depending on your level of experience. If you have just experienced a problem, however, the last entries in the error log should provide information about what has happened.

ServerType
Your ServerType must be set to standalone. By default, your Web server is set to ServerType standalone.

ServerType standalone means that the server is started once and then that server handles all of the connections.

ServerRoot
The ServerRoot is the top-level directory which contains the server's files. Both your secure and non-secure servers are set to use a ServerRoot of "/etc/httpd".

MaxClients
MaxClients sets a limit on the total number of server processes, or simultaneously connected clients, that can run at one time. You should keep MaxClients at a high number (your server's default is set to 150), because no one else will be allowed to connect once that number of simultaneously connected clients is reached. You can not set MaxClients to higher than 256 without recompiling Apache. The main reason for having MaxClients is to keep a runaway Web server from crashing your operating system.

Port
Normally, Port defines the port that your server is listening to. Your Web server, however, is listening to more than one port by default, since the Listen directive is also being used. When Listen directives are in effect, your server listens at all of those ports. See the description of the Listen directive for more information about Listen.

User
The User directive sets the userid used by the server to answer requests. User's setting determines the server's access. Any files inaccessible to this user will also be inaccessible to your website's visitors. The default for User is apache.

The User should only have privileges so that it can access files which are supposed to be visible to the outside world. The User is also the owner of any CGI processes spawned by the server. The User should not be allowed to execute any code which is not intended to be in response to HTTP requests.
Group
The Group directive is similar to the User. The Group sets the group under which the server will answer requests. The default Group is apache.

ServerAdmin
ServerAdmin should be the email address of the Web server's administrator. This email address will show up in error messages on server-generated webpages, so users can report a problem by sending email to the server administrator. ServerAdmin is set by default to root@localhost. Typically, a good way to set up ServerAdmin is to set it to webmaster@your_domain.com. Then alias webmaster to the person responsible for the Web server in /etc/aliases. Finally, run /usr/bin/newaliases to add the new alias.

ServerName
You can use ServerName to set a hostname for your server which is different from your host's real name. For example, you might want to use www.your_domain.com when your server's real name is actually foo.your_domain.com. Note that the ServerName must be a valid Domain Name Service (DNS) name that you have the right to use (do not just make something up).

If you do specify a ServerName, be sure its IP address and server name pair are included in your /etc/hosts file.

DocumentRoot
The DocumentRoot is the directory which contains most of the HTML files which will be served in response to requests. The default DocumentRoot for both the non-secure and secure Web servers is the /var/www/html directory. For example, the server might receive a request for the following document:

	http://your_domain/foo.html

The server will look for the following file in the default directory:

	/var/www/html/foo.html

Directory
<Directory /path/to/directory> and </Directory> tags are used to enclose a group of configuration directives that are meant to apply only to that directory and all of its subdirectories. Any directive which is applicable to a directory may be used within <Directory> tags. <File> tags can be used in the same way, to apply to a specific file or files.

Options
The Options directive controls which server features are available in a particular directory. For example, under the restrictive parameters specified for the root directory, Options is set to only FollowSymLinks. No features are enabled, except that the server is allowed to follow symbolic links in the root directory.

By default, in your DocumentRoot directory, Options is set to include Indexes, Includes and FollowSymLinks. Indexes permits the server to generate a directory listing for a directory if no DirectoryIndex (for example, index.html) is specified. Includes means that server-side includes are permitted. FollowSymLinks allows the server to follow symbolic links in that directory.

You will also need to include Options statements for directories within virtual hosts directives, if you want your virtual hosts to recognize those Options.

For example, server side includes are already enabled inside the /var/www/html directory, because of the Options Includes line within the <Directory "/var/www/html"> directives section. However, if you want a virtual host to recognize server side includes, you will need to include a section like the following within your virtual host's tags:

	<Directory /var/www/html>

Options Includes

</Directory>

Allow
Allow specifies which requester can access a given directory. The requester can be all, a domain name, an IP address, a partial IP address, a network/netmask pair, and so on. Your DocumentRoot directory is configured to Allow requests from all meaning everyone has access.

Deny
Deny works just like Allow, but you are specifying who is denied access. Your DocumentRoot is not configured to Deny requests from anyone by default.

UserDir
UserDir is the name of the subdirectory within each user's home directory where they should place personal HTML files which are to be served by the Web server.

By default, the subdirectory is public_html. For example, the server might receive the following request:

	http://your_domain/~username/foo.html

The server would look for the file:

	/home/username/public_html/foo.html

In the above example, /home/username is the user's home directory (note that the default path to users' home directories may be different on your system).

Make sure that the permissions on the users' home directories are set correctly. Users' home directories must be set to 0711. The read (r) and execute (x) bits must be set on the users' public_html directories (0755 will also work). Files that will be served in users' public_html directories must be set to at least 0644.

DirectoryIndex
The DirectoryIndex is the default page served by the server when a user requests an index of a directory by specifying a forward slash (/) at the end of the directory name.

When a user requests the page http://your_domain/this_directory/, they will get either the DirectoryIndex page if it exists, or a server-generated directory list. The default for DirectoryIndex is index.html index.htm index.shtml index.php index.php4 index.php3 index.cgi. The server will try to find any one of these files, and will return the first one it finds. If it does not find any of these files and Options Indexes is set for that directory, the server will generate and return a listing, in HTML format, of the subdirectories and files in the directory.
Apache Configuration
The Apache Configuration Tool allows you to configure the /etc/httpd/conf/httpd.conf configuration file for your Apache Web server. It does not use the old srm.conf or access.conf configuration files; leave them empty. Through the graphical interface, you can configure Apache directives such as virtual hosts, logging attributes, and maximum number of connections.

Only modules that are shipped with Red Hat Linux can be configured with Apache Configuration Tool. If additional modules are installed, they can not be configured using this tool.

The Apache Configuration Tool requires the X Window System and root access. To start the Apache Configuration Tool, use one of the following methods:

· On the GNOME desktop, go to the Main Menu Button (on the Panel) => Programs => System => Apache Configuration.

· On the KDE desktop, go to the Main Menu Button (on the Panel) => System => Apache Configuration.

· Type the command apacheconf at a shell prompt (for example, in an XTerm or GNOME-terminal).

	
	Do not edit the /etc/httpd/conf/httpd.conf Apache configuration file if you wish to use this tool. Apache Configuration Tool generates this file after you save your changes and exit the program. If you want to add additional modules or configuration options that are not available in Apache Configuration Tool, you cannot use this tool.

The general steps for configuring the Apache Web Server using the Apache Configuration Tool are as following:

1. Configure the basic settings under the Main tab.

2. Click on the Virtual Hosts tab and configure the default settings.

3. Under the Virtual Hosts tab, configure the Default Virtual Host.

4. If you want to serve more than one URL or virtual host, add the additional virtual hosts.

5. Configure the server settings under the Server tab.

6. Configure the connections settings under the Performance Tuning tab.

7. Copy all necessary files to the DocumentRoot and cgi-bin directories, and save your settings in the Apache Configuration Tool.

Basic Settings

Use the Main tab to configure the basic server settings.

[image: image1.png]
Figure 1. Basic Settings
Enter a fully qualified domain name that you have the right to use in the Server Name text area. This option corresponds to the ServerName directive in httpd.conf. The ServerName directive sets the hostname of the Web server. It is used when creating redirection URLs. If you do not define a server name, Apache attempts to resolve it from the IP address of the system. The server name does not have to be the domain name resolved from the IP address of the server. For example, you might want to set the server name to www.your_domain.com when your server's real DNS name is actually foo.your_domain.com.

Enter the email address of the person who maintains the Web server in the Webmaster email address text area. This option corresponds to the ServerAdmin directive in httpd.conf. If you configure the server's error pages to contain an email address, this email address will be used so that users can report a problem by sending email to the server's administrator. The default value is root@localhost.

Use the Available Addresses area to define the ports on which Apache will accept incoming requests. This option corresponds to the Listen directive in httpd.conf. By default, Red Hat configures Apache to listen to port 80 for non-secure Web communications. Click the Add button to define additional ports on which to accept requests. A window as shown in Figure 2 will appear. Either choose the Listen to all addresses option to listen to all IP addresses on the defined port or specify a particular IP address over which the server will accept connections in the Address field. Only specify one IP address per port number. If you want to specify more than one IP address with the same port number, create an entry for each IP address. If at all possible, use an IP address instead of a domain name to prevent a DNS lookup failure. Entering an asterisk (*) in the Address field is the same as choosing Listen to all addresses. Clicking the Edit button shows the same window as the Add button except with the fields populated for the selected entry. To delete an entry, select it and click the Delete button.

[image: image2.png]
Figure 2. Available Addresses
Default Settings

After defining the Server Name, Webmaster email address, and Available Addresses, click the Virtual Hosts tab and click the Edit Default Settings button. The window shown in Figure 3 will appear. Configure the default settings for your Web server in this window. If you add a virtual host, the settings you configure for the virtual host take precedence for that virtual host. For a directive not defined within the virtual host settings, the default value is used.

Site Configuration

The default values for the Directory Page Search List and Error Pages will work for most servers. If you are unsure of these settings, do not modify them.

[image: image3.png]
Figure 3. Site Configuration
The entries listed in the Directory Page Search List define the DirectoryIndex directive. The DirectoryIndex is the default page served by the server when a user requests an index of a directory by specifying a forward slash (/) at the end of the directory name.

For example, when a user requests the page http://your_domain/this_directory/, they are going to get either the DirectoryIndex page if it exists, or a server-generated directory list. The server will try to find one of the files listed in the DirectoryIndex directive and will return the first one it finds. If it does not find any of these files and if Options Indexes is set for that directory, the server will generate and return a list, in HTML format, of the subdirectories and files in the directory.

Logging

By default, Apache writes the transfer log to the file /var/log/httpd/access_log and the error log to the file /var/log/httpd/error_log.

[image: image4.png]
Figure 4. Logging
The transfer log contains a list of all attempts to access the Web server. It records the IP address of the client that is attempting to connect, the date and time of the attempt, and the file on the Web server that it is trying to retrieve. Enter the name of the path and file in which to store this information. If the path and filename does not start with a slash (/), the path is relative to the server root directory as configured. This option corresponds to the TransferLog directive.

You can configure a custom log format by checking Use custom logging facilities and entering a custom log string in the Custom Log String field. This configures the LogFormat directive.

The error log contains a list of any server errors that occur. Enter the name of the path and file in which to store this information. If the path and filename does not start with a slash (/), the path is relative to the server root directory as configured. This option corresponds to the ErrorLog directive.

Use the Log Level menu to set how verbose the error messages in the error logs will be. It can be set (from least verbose to most verbose) to emerg, alert, crit, error, warn, notice, info or debug. This option corresponds to the LogLevel directive.

The value chosen with the Reverse DNS Lookup menu defines the HostnameLookups directive. Choosing No Reverse Lookup sets the value to off. Choosing Reverse Lookup sets the value to on. Choosing Double Reverse Lookup sets the value to double.

If you choose Reverse Lookup, your server will automatically resolve the IP address for each connection which requests a document from your Web server. Resolving the IP address means that your server will make one or more connections to the DNS in order to find out the hostname that corresponds to a particular IP address.

If you choose Double Reverse Lookup, your server will perform a double-reverse DNS. In other words, after a reverse lookup is performed, a forward lookup is performed on the result. At least one of the IP addresses in the forward lookup must match the address from the first reverse lookup.

Generally, you should leave this option set to No Reverse Lookup, because the DNS requests add a load to your server and may slow it down. If your server is busy, the effects of trying to perform these reverse lookups or double reverse lookups may be quite noticeable.

Reverse lookups and double reverse lookups are also an issue for the Internet as a whole. All of the individual connections made to look up each hostname add up. Therefore, for your own Web server's benefit, as well as for the Internet's benefit, you should leave this option set to No Reverse Lookup.

Directories

Use the Directories page to configure options for specific directories. This corresponds to the <Directory> directive.
Click the Edit button in the top right-hand corner to configure the Default Directory Options for all directories that are not specified in the Directory list below it. The options that you choose are listed as the Options directive within the <Directory> directive. You can configure the following options:

· ExecCGI — Allow execution of CGI scripts. CGI scripts are not executed if this option is not chosen.

· FollowSymLinks — Allow symbolic links to be followed.

· Includes — Allow server-side includes.

· IncludesNOEXEC — Allow server-side includes, but disable the #exec and #include commands in CGI scripts.

· Indexes — Display a formatted list of the directory's contents, if no DirectoryIndex (such as index.html) exists in the requested directory.

· Multiview — Support content-negotiated multiviews; this option is disabled by default.

· SymLinksIfOwnerMatch — Only follow symbolic links if the target file or directory has the same owner as the link.

[image: image5.png]
Figure 5. Directories
To specify options for specific directories, click the Add button beside the Directory list box. The window shown in Figure 6 appears. Enter the directory to configure in the Directory text field at the bottom of the window. Select the options in the right-hand list, and configure the Order directive with the left-hand side options. The Order directive controls the order in which allow and deny directives are evaluated. In the Allow hosts from and Deny hosts from text field, you can specify one of the following:

· Allow all hosts — Type all to allow access to all hosts.

· Partial domain name — Allow all hosts whose names match or end with the specified string.

· Full IP address — Allow access to a specific IP address.

· A subnet — Such as 192.168.1.0/255.255.255.0

· A network CIDR specification — such as 10.3.0.0/16
[image: image6.png]
Figure 6. Directory Settings
If you check the Let .htaccess files override directory options, the configuration directives in the .htaccess file take precedence.
Setting Up a Web Site that Uses PHP

PHP is a server-side web programming language that you can embed into HTML pages. When a user accesses a PHP-based page, PHP dynamically creates a web page that is then passed to the browser.

PHP offers built-in database integration for several commercial and non-commercial database management systems. It also has the ability to perform many useful Web-related tasks using a large set of built-in functions. As the PHP syntax is similar to that of C, if you are familiar with C, Perl, or any other C-like language, the learning curve for PHP will be minimal. PHP is simple and flexible, thus allowing for short development cycles. Being an open source product, the source code is available and everyone can use it, modify it, and redistribute it under the terms of the GNU General Public License (GPL) as published by the Free Software Foundation (FSF).

PHP and Red Hat Database packages work together seamlessly, so you can easily build complex web applications using PHP as a front-end communicating with Red Hat Database server as the backend.

You can install PHP as an Apache module or as a CGI interpreter. Red Hat recommends the former as it does not involve the spawning of additional processes, which results in more efficient access. The most common use of PHP is as a replacement for CGI scripts.

This chapter guides you through the configuration and installation of Apache with PHP as an Apache module or as a CGI interpreter and provides a sample application to show how PHP communicates with Red Hat Database.

PHP Installation

To have PHP work with Red Hat Database, you need to configure PHP to include PostgreSQL support (which is not included in the standard RPM) and then install it as an Apache module or as a CGI interpreter.

Install PHP as an Apache Module

To install PHP as an Apache module:

1. Download the Apache and PHP source RPMs and save them under the /tmp directory. From the ftp://ftp.redhat.com site, get the files:

	/pub/redhat/linux/7.1/en/os/i386/SRPMS/apache-1.3.19-5.src.rpm

/pub/redhat/linux/7.1/en/os/i386/SRPMS/php-4.0.4pl1-9.src.rpm

2. Login as root and change directory to /tmp:

	$ su -

$ cd /tmp

3. Install the SRPMS:

	$ rpm -i apache-1.3.19-5.src.rpm

$ rpm -i php-4.0.4pl1-9.src.rpm

4. Extract Apache and PHP from the compressed tar files, which are part of the SRPMS, with the following commands:

	$ tar -xzvf /usr/src/redhat/SOURCES/apache_1.3.19.tar.gz

$ tar -xzvf /usr/src/redhat/SOURCES/php-4.0.4pl1.tar.gz

5. After the files have been extracted, two directories are created under /tmp, namely apache_1.3.19 and php-4.0.4pl1, change directory to the Apache directory and configure Apache:

	$ cd /tmp/apache_1.3.19

$ pwd

 /tmp/apache_1.3.19

$./configure --prefix=/usr/local/apache

6. Change directory to the PHP directory, configure and build PHP with PostgreSQL support. (The following is based on a standard Red Hat Database installation with the PostgreSQL include files under /usr/include/pgsql). This configuration specifies building PHP as Apache module where the top-level Apache build directory is ../apache_1.3.19, with PostgreSQL support, without MySQL support. The resultant files will be placed in /usr/local/php4:

	$ cd /tmp/php-4.0.4pl1

$ pwd

 /tmp/php-4.0.4pl1

$./configure --with-apache=../apache_1.3.19 \

 --with-pgsql=/usr/include/pgsql --without-mysql \

 --prefix=/usr/local/php4

$ make

$ make install

7. Change to the Apache directory and then reconfigure Apache so that PHP is installed as an Apache module. This configuration specifies building Apache with the PHP4 module enabled and activated, and resultant files placed into /usr/local/apache, configuration files into /usr/local/apache/conf, include files into /usr/local/apache/include, program executables into /usr/local/apache/libexec, and read-only document files into /var/www/html:

	$ cd /tmp/apache_1.3.19

$./configure --prefix=/usr/local/apache \

--activate-module=src/modules/php4/libphp4.a \

--sysconfdir=/usr/local/apache/conf \

--includedir=/usr/local/apache/include \

--libexecdir=/usr/local/apache/libexec \

--htdocsdir=/var/www/html --enable-module=php4 \

--enable-shared=max

$ make

$ make install

Install PHP as a CGI Interpreter

To install PHP as a CGI interpreter:

1. Download the PHP source, save it under /tmp. From the ftp://ftp.redhat.com site, get the files:

	/pub/redhat/linux/7.1/en/os/i386/SRPMS/php-4.0.4pl1-9.src.rpm

2. Login as root and change directory to /tmp and install the SRPM:

	$ su -

$ cd /tmp

$ rpm -i php-4.0.4pl1-9.src.rpm

3. Extract PHP from the compressed tar file with the following commands:

	$ tar -xzvf /usr/src/redhat/SOURCES/php-4.0.4pl1.tar.gz

4. Change to the PHP directory, configure PHP with PostgreSQL support where the PostgreSQL header files directory is /usr/include/pgsql, install directory is /usr/local/php4, build and install PHP:

	$ cd php-4.0.4pl1

$./configure --with-pgsql=/usr/include/pgsql \

 --prefix=/usr/local/php4

$ make

$ make install

PHP Configuration

After PHP and Apache are built and installed, follow the instructions that follow. These steps have to be carried out whether PHP is installed as an Apache module or as a CGI interpreter.

1. Change directory to the PHP directory and copy the php.ini file. This will enable you to edit /usr/local/lib/php.ini to set PHP options.

	$ cd /tmp/php-4.0.4pl1

$ cp php.ini-dist /usr/local/lib/php.ini

2. Edit httpd.conf, the configuration file for Apache:

· If you have installed PHP as an Apache module, edit /usr/local/apache/conf/httpd.conf.

· If you installed PHP as a CGI interpreter, edit /etc/httpd/conf/httpd.conf.

Find the following lines and uncomment them:

	LoadModule php4_module libexec/libphp4.so

AddModule mod_php4.c

AddType application/x-httpd-php .php

Start or Restart the Apache Server

To start or restart the Apache daemon:

· If you have Apache configured and built as described in the Install PHP as an Apache Module section, use the following command:

	$ /usr/local/bin/apachectl restart

· If you have Apache configured and built as described in the Install PHP as a CGI Interpreter section, use the following command:

	$ /etc/rc.d/init.d/httpd restart

If Apache is already started by a previous installation, the configuration files are checked automatically before restarting.

Confirm that PHP is Working Properly

To confirm that PHP is working properly:

1. Create a file called test.php, which has to be readable by all, in /var/www/html, the Apache default location for web pages. The contents of the file, depending on whether you installed PHP as a module or as a CGI interpreter, contain the following:

· If PHP is installed as an Apache module:

	<HTML>

<HEAD>

Testing PHP</TITLE>

</HEAD>

<BODY>

<?

 /*

 * Print PHP info

 */

 phpinfo();

?>

</BODY>

</HTML>

· If PHP is installed as a CGI interpreter:

	# /usr/local/php4/bin/php

<HTML>

<HEAD>

Testing PHP</TITLE>

</HEAD>

<BODY>

<?php

 /*

 * Print PHP info

 */

 phpinfo();

?>

</BODY>

</HTML>

2. Point to the following URL in your browser: http://hostname/test.php

If everything is working correctly, a page containing information about the PHP installation, configuration, and version number is displayed

Sample Application

This section contains a simple example that illustrates how PHP and Red Hat Database work together. This application will add the user's name, address, email address, and a member identification number (automatically generated) into a table.
Creating the Database Schema

Create the sample database using the following SQL commands through the psql interface:

	-- create a database named sample

CREATE DATABASE sample;

-- connect to the sample database

\c sample

--create a sequence for member id

CREATE SEQUENCE UpByOne;

-- create a table 'members' with email as the primary key

CREATE TABLE members(

 name TEXT,

 address TEXT,

 email TEXT,

 mem_id INTEGER,

 PRIMARY KEY (email)

);

-- to allow user 'nobody' to update the table 'members'

-- and use the sequence 'UpByOne'

grant all on members to nobody;

grant all on UpByOne to nobody;

Creating the PHP Files

To create the PHP files:

1. Change to the /var/www/html directory:

	$ cd /var/www/html

2. Create the HTML form for user input, reg.php, ensuring that it is world readable. This form enables users to input some values to be processed. It is assumed that PHP is installed as an Apache module; if PHP is installed as a CGI interpreter, you have to update the .php files accordingly.

	<?

 print("<BODY BGCOLOR=\"#FFFFCC\">\n");

 print("<HTML>\n");

 print("<HEAD>\n");

 print("Register As a Member</TITLE>\n");

 print("</HEAD>\n");

 print("<BODY>\n");

 print("Enter the following to register as a member\n");

 /* use reguser.php to handle the data */

 print("<FORM ACTION=\"reguser.php\">\n");

 print("<TABLE>\n");

 /* put the text fields in the form for user input */

 print("<TR>\n");

 print("<TD>Name</TD>");

 print("<TD><INPUT TYPE=\"text\" SIZE=30 NAME=\"Name\"></TD>\n");

 print("</TR>\n");

 print("<TR>\n");

 print("<TD>Address</TD>");

 print("<TD><INPUT TYPE=\"text\" SIZE=60 NAME=\"Address\"></TD>\n");

 print("</TR>\n");

 print("<TR>\n");

 print("<TD>Email Address</TD>");

 print("<TD><INPUT TYPE=\"text\" SIZE=30 NAME=\"Email\"></TD>\n");

 print("</TR>\n");

 print("</TABLE>\n");

 print("<INPUT TYPE=\"Submit\" NAME=\"Search\">\n");

 print("</FORM>\n");

 print("</BODY>\n");

 print("</HTML>\n");

?>

3. Create reguser.php, which also needs to be readable by all, containing the following code. This script performs some checking, tries to create a connection with the database, inserts the row, gets the user's member id, returns the info to the user, and closes the connection.

	<?

 /*

 * This function prints a line in blue with font size 5

 */

 function PrintTitle($title)

 {

 print("<CENTER>");

 print("");

 print("");

 print(strtoupper($title));

 print("");

 print("");

 print("</CENTER>\n");

 }

 /*

 * This function prints a line in blue with font size 5

 */

 function PrintError($title)

 {

 print("<CENTER>");

 print("");

 print("");

 print(strtoupper($title));

 print("");

 print("");

 print("</CENTER>\n");

 }

 print("<BODY BGCOLOR=\"#FFFFCC\">\n");

 print("<HTML>\n");

 print("<HEAD>\n");

 print("Register As a Member</TITLE>\n");

 print("</HEAD>\n");

 print("<BODY>\n");

 // to check for empty fields in the form when user

 // clicks on the submit button

 if ($Name == "")

 {

 printError("Please fill in your name.
\n");

 exit;

 }

 if ($Address == "")

 {

 printError("Please fill in your address.
\n");

 exit;

 }

 if ($Email == "")

 {

 printError("Please fill in your email

 address.
\n");

 exit;

 }

 // Connect to database sample with default host, port,

 // options, TTY, and database named "sample"

 if (!($Connection = pg_connect("", "", "", "", "sample")))

 {

 // exit if connection cannot be established

 print("Could not establish connection.
\n");

 exit;

 }

 //create SQL statement for inserting the new row

 $SQLstat = "INSERT INTO members VALUES";

 $SQLstat .= "('$Name', '$Address', '$Email',

 NEXTVAL('UpByOne'))";

 //execute the SQL statement created

 if(!($Result = pg_exec($Connection, $SQLstat)))

 {

 // exit if there are errors when executing the SQL

 // statement

 print("Could not execute query: ");

 print(pg_errormessage($Connection));

 print("
\n");

 exit;

 }

 // select the row that was just inserted

 $SQLstat = "SELECT * FROM members WHERE email='$Email'";

 // execute the select statement

 if(!($Result = pg_exec($Connection, $SQLstat)))

 {

 print("Could not execute query: ");

 print(pg_errormessage($Connection));

 print("
\n");

 exit;

 }

 PrintTitle("Thank you for your registration!");

 // display the member id number by select the value

 // in the mem_id field of the newly inserted row

 $result_ID = pg_result($Result, 0, "mem_id");

 PrintTitle("Your member id is $result_ID.");

 // free the result and close the connection

 pg_freeresult($Result);

 pg_close($Connection);

 print("</BR>\n");

 print("</BODY>\n");

 print("</HTML>\n");

?>

4. Create another file listmembers.php, which is readable by all, with the following statements. This script will try to connect to the database, select all rows in the table, loop through each one of them and print out each field for each row.

	<?

 function PrintTitle($title)

 {

 print("<CENTER>");

 print("");

 print("");

 print(strtoupper($title));

 print("");

 print("");

 print("</CENTER>\n");

 }

 print("<BODY BGCOLOR=\"#FFFFCC\">\n");

 print("<HTML>\n");

 print("<HEAD>\n");

 print("All Members</TITLE>\n");

 print("</HEAD>\n");

 print("<BODY>\n");

 // Connect to database sample

 if (!($Connection = pg_connect("", "", "", "", "sample")))

 {

 print("Could not establish connection.
\n");

 exit;

 }

 //create SQL statement to list all members

 $SQLstat = "SELECT * FROM members";

 //execute the select statement

 if(!($Result = pg_exec($Connection, $SQLstat)))

 {

 print("Could not execute query: ");

 print(pg_errormessage($Connection));

 print("
\n");

 exit;

 }

 //display the members

 print("<TABLE BORDER=1>\n");

 // print header row

 print("<TR>\n");

 for($Field=0; $Field < pg_numfields($Result); $Field++)

 {

 print("<TD>");

 print("");

 print(strtoupper(pg_fieldname($Result, $Field) . " "));

 print("");

 print("</TD>\n");

 }

 print("</TR>\n");

 //loop through rows

 for($Row=0; $Row < pg_numrows($Result); $Row++)

 {

 print("<TR>\n");

 // print out each field

 for($Field=0; $Field < pg_numfields($Result);

 $Field++)

 {

 print("<TD>");

 print(pg_result($Result, $Row, $Field));

 print("</TD>\n");

 }

 print("</TR>\n");

 }

 print("</TABLE>\n");

 // free the result and close the connection

 pg_freeresult($Result);

 pg_close($Connection);

 print("</BR>\n");

 print("</BODY>\n");

 print("</HTML>\n");

?>

Updating the Table

Update the table using the PHP form:

1. After creating the above files, point to the following URL in a web browser: http://hostname/reg.php

You can now type in the information and click on the Submit button. PHP is called from the HTML form and reguser.php receives the three form fields. PHP changes the form fields into variables that will be processed.

2. After you have input one or more entries, point to the following URL in a web browser: http://hostname/listmembers.php

The browser displays a list of all the members in the table members.

Reference

· http://redhat.com — The Linux Red Hat official website

· http://httpd.apache.org — The official website for the Apache Web server
· http://www.apacheweek.com — A comprehensive online weekly about Apache.

· Administering Apache by Mark Allan Arnold; Osborne Media Group[image: image7][image: image8][image: image9]
