Content
0Content

1I.
Overview

1II.
Apache Web Server

11.
Introduction

12.
What a Web server is

13.
Web communication

24.
Web server Configuration Explanation

45.
Dynamic Shared Object (DSO) Support

106.
Customizable error response

127.
Virtual hosts

168.
DNS Effect

169.
Password Protection to a Directory

18III.
Building and configuring the wu-ftp server

181.
Introduction

182.
Configuring the wu-ftpd server for a guest user account

23IV.
Mail Server using sendmail

231.
Introduction.

232.
Sendmail Configuration

I. Overview
The concept of this class is that you come in possessing basic Linux Sysadmin skills and leave being able to bring up your own Internet Server for yourself or a corporation.

II. Apache Web Server
1. Introduction

According to web surveys, the Apache httpd server is the most popular web server. It is a powerful, flexible web server implements the latest protocols, including HTTP/1.1. It comes with full source code and an unrestrictive license and is highly configurable and extensible with third-party modules. Moreover, it implements many frequently requested features, including DBM databases for authentication, customized responses to errors and problems, multiple DirectoryIndex directives, unlimited flexible URL rewriting and aliasing, content negotiation and virtual Hosts.
2. What a Web server is
Basically for communication where there is a client-server flavor, the server process creates a socket and the client socket accesses the server through client socket techniques.

A socket is fundamentally nothing but an end point of communication. It can be of two types: Physical socket and Logical socket. In Logical socket operating system has its system calls, which creates them. Now for client-server access the socket needs three things to provide service or ask for service.

Service name (example: telnet)
Protocol (TCP-stream)
Port no (23)
The service uses protocol and protocol uses port number to provide service at server end and to get service at client end. Ultimately we find that the port number is mainly responsible for a client server communication. The protocols supported by Linux is shown by /etc/protocols and the services can be seen in /etc/services.

Let's take few more examples then start with Web server.

* telnet service uses TCP/IP protocol and communicate through port no. 23

* ftp service uses TCP/IP protocol and communicate through 20,21 port numbers

* www service uses http protocol and communicate through port no 80.

3. Web communication

Web communication deals with a browser type of client process and Web server type of server process. What actually happens when a user writes http://www.yahoo.com? Well, the browser transfers the URL to current machine's operating system with a destination address' operating system, which is responsible for extracting protocol i.e. "http" from the client socket (browsers) and then it packets data using layer software and over the packet it attaches the header http. This enables the remote machine to hand over the request to Web server of remote machine. Why so? Because there can be many a server running on the same machine so the particular services are distinguished by their protocol.

But how should we explain when telnet and ftp both are using same protocol but have different server Processes? The answer is that they are distinguished by their port numbers. Services may have same protocol but not the same port number. After this the operating system throws the data to network interface card through the ram and then network interface card gives it to nearest gateway, which sends the data to the server machine at server end.

The network card gives a signal back to operating system that a data enclosed with http header using TCP/IP header has arrived. One's operating system checks that data has http wrapper and searches for Web server on that machine. When it finds, it hands over the data and pays attention to other processes.

Before the Web server processes the data, it goes through a filtration by the gateway process implemented on the Web server, which actually filters the raw data. This concept implemented is called as common gateway interface that has the Web server environment variables, which stores the data in different variable. When the user asks for some unnecessary data, headers also get attached with data and so the need for filtration.

4. Web server Configuration Explanation

The Web server is meant for keeping Websites. There are three ways a Website can be stored. They are:

1. default directory hosting
2. virtual directory hosting
3. virtual domain hosting
We have to first configure the DNS. Then configure the following file (redhat 6.2) /etc/httpd/conf/httpd.conf If we use Apache as a Web server whether on Windows platform or Linux, the main file which is used is called /etc/httpd/conf/httpd.conf

The root directory of Web server is /etc/httpd, which is divided into three parts:

1. /etc/httpd/conf (where configuration files stays)
2. /etc/httpd/logs (where the logs of Web server and site accessing stay)
3. /etc/httpd/modules (where the module stays, which enables the server side programmer to do programming in the languages supported by Web server)
Lets open the file /etc/httpd/conf/httpd.conf and take a detailed look at the macros to be used.

httpd.conf-Apache HTTP server configuration file (Based upon the NCSA server configuration files originally by Rob McCool.) . This is the main Apache server configuration file. It contains the configuration directives that give the server its instructions.

Note: See http://www.Apache.org/docs for detailed information about the directives. Do not simply read the instructions in here without understanding what they do. They're here as hints or reminders. If you are unsure consult the online docs.

After this (httpd.conf) file is processed, the server will look for and process (only in the case of 6.1 the following mentioned file is checked. If it is 6.2 they are not checked):

/usr/conf/srm.conf

and then

/usr/conf/access.conf

unless you have overridden these with ResourceConfig and/or AccessConfig directives here.

Directives

The configuration directives are grouped into three basic sections:

1. Directives that control the operation of the Apache server process as a whole (the 'global environment').
2. Directives that define the parameters of the `main' or `default' server, which responds to requests that aren't handled by a virtual host. These directives also provide default values for the settings of all virtual hosts.
3. Settings for virtual hosts, which allow Web requests to be sent to different IP addresses or hostnames and have them handled by the same Apache server process.
Global Environment

The directives in this section affect the overall operation of Apache, such as the number of concurrent requests it can handle or where it can find its configuration files.

ServerType: ServerType is either inetd, or standalone. Inetd mode is only supported on Unix platforms.

ServerRoot: The top of the directory tree under which the server's configuration, error, and log files are kept.

NOTE: If you intend to place this on an NFS (or otherwise network) mounted filesystem then please read the LockFile documentation (available at http://www.Apache.org/docs/mod/core.htmllockfile); You will save yourself a lot of trouble. Do not add a slash at the end of the directory path.

ServerRoot "/etc/httpd"

LockFile: The LockFile directive sets the path to the lockfile used when Apache is compiled with either

USE_FCNTL_SERIALIZED_ACCEPT or

USE_FLOCK_SERIALIZED_ACCEPT.

This directive should normally be left at its default value. The main reason for changing it is if the logs directory is NFS mounted, since the lockfile must be stored on a local disk. The PID of the main server process is automatically appended to the filename.

LockFile /var/lock/httpd.lock

PidFile: The file in which the server should record its process identification number when it starts.

PidFile /var/run/httpd.pid

ScoreBoardFile: File used to store internal server process information. Not all architectures require this. But if yours does (you'll know because this file will be created when you run Apache) then you must ensure that no two invocations of Apache share the same scoreboard file.

ScoreBoardFile /var/run/httpd.scoreboard

In the standard configuration, the server will process this file, srm.conf, and access.conf in that order. The latter two files are now distributed empty, as it is recommended that all directives be kept in a single file for simplicity. The commented-out values below are the built-in defaults. You can have the server ignore these files altogether by using "/dev/null" (for Unix) or "nul" (for Win32) for the arguments to the directives.

ResourceConfig conf/srm.conf

AccessConfig conf/access.conf

Timeout: The number of seconds before receives and sends time out.

Timeout 300

KeepAlive: Whether or not to allow persistent connections (more than one request per connection). Set to "Off" to deactivate. But we keep it :

KeepAlive On

MaxKeepAliveRequests: The maximum number of requests to be allowed during a persistent connection. Set to 0 to allow an unlimited amount. We recommend you leave this number high, for maximum performance.

MaxKeepAliveRequests 100

KeepAliveTimeout: Number of seconds to wait for the next request from the same client on the same connection.

KeepAliveTimeout 15

Server-pool size regulation: Rather than making you guess how many server processes you need, Apache dynamically adapts to the load it sees --- that is, it tries to maintain enough server processes to handle the current load, plus a few spare servers to handle transient load spikes (e.g, multiple simultaneous requests from a single Netscape browser).

It does this by periodically checking how many servers are waiting for a request. If there are fewer than MinSpareServers, it creates a new spare. If there are more than MaxSpareServers, some of the spares die off. The default values are probably OK for most sites.

MinSpareServers 5

MaxSpareServers 20

Number of servers to start initially should be a reasonable ballpark figure.

StartServers 8

Limit on total number of servers running: Limit on the number of clients who can simultaneously connect. If this limit is ever reached, clients will be `locked out', so it should not be set too low. It is intended, mainly, as a brake to keep a runaway server from taking the system with it as it spirals down.

MaxClients 150

MaxRequestsPerChild: The number of requests each child process is allowed to process before the child dies. The child will exit so as to avoid problems after prolonged use when Apache (and maybe the libraries it uses) leak memory or other resources. On most systems, this isn't really needed, but a few (such as Solaris) do have notable leaks in the libraries. For these platforms, set to something like 10000 or so; a setting of 0 means unlimited.

NOTE: This value does not include keepalive requests after the initial request per connection. For example, if a child process handles an initial request and 10 subsequent "keptalive" requests, it would only count as 1 request towards this limit.

MaxRequestsPerChild 100

Listen: Allows you to bind Apache to specific IP addresses and/or ports, in addition to the default. See also the directive.

Listen 3000

Listen 12.34.56.78:80

BindAddress: You can support virtual hosts with this option. This directive is used to tell the server which IP address to listen to. It can either contain "*", an IP address, or a fully qualified Internet domain name.

BindAddress *
4. Dynamic Shared Object (DSO) Support

To be able to use the functionality of a module which was built as a DSO you have to place corresponding 'LoadModule' lines at this location so the directives contained in it are actually available before they are used. Please read the file README.DSO in the Apache 1.3 distribution for more details about the DSO mechanism and run 'httpd -l' for the list of already built-in (statically linked and thus always available) modules in your httpd binary.

Note: The order in which modules are loaded is important. Don't change the order below without expert advice.

Example:

LoadModule foo_module modules/mod_foo.so

LoadModule mmap_static_module modules/mod_mmap_static.so

LoadModule vhost_alias_module modules/mod_vhost_alias.so

LoadModule env_module modules/mod_env.so

LoadModule config_log_module modules/mod_log_config.so

LoadModule agent_log_module modules/mod_log_agent.so

LoadModule referer_log_module modules/mod_log_referer.so

LoadModule mime_magic_module modules/mod_mime_magic.so

LoadModule mime_module modules/mod_mime.so

LoadModule negotiation_module modules/mod_negotiation.so

LoadModule status_module modules/mod_status.so

LoadModule info_module modules/mod_info.so

LoadModule includes_module modules/mod_include.so

LoadModule autoindex_module modules/mod_autoindex.so

LoadModule dir_module modules/mod_dir.so

LoadModule cgi_module modules/mod_cgi.so

LoadModule asis_module modules/mod_asis.so

LoadModule imap_module modules/mod_imap.so

LoadModule action_module modules/mod_actions.so

LoadModule speling_module modules/mod_speling.so

LoadModule userdir_module modules/mod_userdir.so

LoadModule alias_module modules/mod_alias.so

LoadModule rewrite_module modules/mod_rewrite.so

LoadModule access_module modules/mod_access.so

LoadModule auth_module modules/mod_auth.so

LoadModule anon_auth_module modules/mod_auth_anon.so

LoadModule db_auth_module modules/mod_auth_db.so

LoadModule digest_module modules/mod_digest.so

LoadModule proxy_module modules/libproxy.so

LoadModule cern_meta_module modules/mod_cern_meta.so

LoadModule expires_module modules/mod_expires.so

LoadModule headers_module modules/mod_headers.so

LoadModule usertrack_module modules/mod_usertrack.so

LoadModule example_module modules/mod_example.so

LoadModule unique_id_module modules/mod_unique_id.so

LoadModule setenvif_module modules/mod_setenvif.so

LoadModule bandwidth_module modules/mod_bandwidth.so

LoadModule put_module modules/mod_put.so

Extra Modules

LoadModule perl_module modules/libperl.so

LoadModule php_module modules/mod_php.so

LoadModule php3_module modules/libphp3.so

Reconstruction of the complete module list from all available modules (static and shared ones) to achieve correct module execution order is necessary (whenever you change the LoadModule section above update this too).

ClearModuleList

AddModule mod_mmap_static.c

AddModule mod_vhost_alias.c

AddModule mod_env.c

AddModule mod_log_config.c

AddModule mod_log_agent.c

AddModule mod_log_referer.c

AddModule mod_mime_magic.c

AddModule mod_mime.c

AddModule mod_negotiation.c

AddModule mod_status.c

AddModule mod_info.c

AddModule mod_include.c

AddModule mod_autoindex.c

AddModule mod_dir.c

AddModule mod_cgi.c

AddModule mod_asis.c

AddModule mod_imap.c

AddModule mod_actions.c

AddModule mod_speling.c

AddModule mod_userdir.c

AddModule mod_alias.c

AddModule mod_rewrite.c

AddModule mod_access.c

AddModule mod_auth.c

AddModule mod_auth_anon.c

AddModule mod_auth_db.c

AddModule mod_digest.c

AddModule mod_proxy.c

AddModule mod_cern_meta.c

AddModule mod_expires.c

AddModule mod_headers.c

AddModule mod_usertrack.c

AddModule mod_example.c

AddModule mod_unique_id.c

AddModule mod_so.c

AddModule mod_setenvif.c

AddModule mod_bandwidth.c

AddModule mod_put.c

Extra Modules

AddModule mod_perl.c

AddModule mod_php.c

AddModule mod_php3.c

ExtendedStatus: Controls whether Apache will generate "full" status information (ExtendedStatus On) or just basic information (ExtendedStatus Off) when the "server-status" handler is called. The default is Off.

ExtendedStatus On

Main server configuration

The directives in this section set up the values used by the 'main' server, which responds to any requests that aren't handled by a definition. These values also provide defaults for any containers you may define later in the file. All of these directives may appear inside containers, in which case these default settings will be overridden for the virtual host being defined.

If your ServerType directive (set earlier in the 'Global Environment' section) is set to "inetd", the next few directives don't have any effect since their settings are defined by the inetd configuration.

Skip ahead to the ServerAdmin directive.

Port: The port to which the standalone server listens. For ports <1023, you will need httpd to be run as root initially.

Port 80

If you wish httpd to run as a different user or group, you must run httpd as root initially and it will switch.

User/Group: The name (or number) of the user/group to run httpd as:

On SCO (ODT 3) use "User nouser" and "Group nogroup".

On HPUX you may not be able to use shared memory as anybody, and the suggested workaround is to create a user www and use that user.

Note: Some kernels refuse to setgid(Group) or semctl(IPC_SET) when the value of (unsigned)Group is above 60000; don't use Group nobody on these systems!

User nobody

Group nobody

ServerAdmin: Your address, where problems with the server should be emailed. This address appears on some server-generated pages, such as error documents.

ServerAdmin root@localhost

ServerName: Allows you to set a host name which is sent back to your server if it's different than the one the program would get (i.e., use "www" instead of the host's real name).

Note: You cannot just invent host names and hope they work. The name you define here must be a valid DNS name for your host. If you don't understand this, ask your network administrator.

If your host doesn't have a registered DNS name, enter its IP address here.

You will have to access it by its address (e.g., http://123.45.67.89/) anyway, and this will make redirections work in a sensible way.

ServerName localhost

DocumentRoot: The directory out of which you will serve your documents. By default, all requests are taken from this directory, but symbolic links and aliases may be used to point to other locations.

DocumentRoot "/home/httpd/html"

Each directory to which Apache has access, can be configured with respect to which services and features are allowed and/or disabled in that directory (and its subdirectories).

First, we configure the "default" to be a very restrictive set of permissions.

Options FollowSymLinks

AllowOverride None

Note: From this point forward you must specifically allow particular features to be enabled - so if something's not working as you might expect, make sure that you have specifically enabled it below.

This should be changed to whatever you set DocumentRoot to.

This may also be "None", "All", or any combination of "Indexes", "Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".

Note: "MultiViews" must be named explicitly --- "Options All" doesn't give it to you.

Options Indexes Includes FollowSymLinks

This controls which options the .htaccess files in directories can override. Can also be "All", or any combination of "Options", "FileInfo", "AuthConfig", and "Limit"

AllowOverride all

Controls who can get stuff from this server.

Order allow,deny

Allow from all

UserDir: The name of the directory which is appended onto a user's home directory if a ~user request is received.

UserDir public_html

Control access to UserDir directories. The following is an example for a site where these directories are restricted to read-only.

AllowOverride FileInfo AuthConfig Limit

Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec

Order allow,deny

Allow from all

Order deny,allow

Deny from all

DirectoryIndex: Name of the file or files to use as a pre-written HTML directory index. Separate multiple entries with spaces.

DirectoryIndex index.html index.htm index.shtml index.cgi

AccessFileName: The name of the file to look for in each directory for access control information.

AccessFileName .htaccess

The following lines prevent .htaccess files from being viewed by Web clients. Since .htaccess files often contain authorization information, access is disallowed for security reasons. Comment these lines out if you want Web visitors to see the contents of .htaccess files. If you change the AccessFileName directive above, be sure to make the corresponding changes here.

Also, folks tend to use names such as .htpasswd for password files, so this will protect those as well.

Order allow,deny

Deny from all

CacheNegotiatedDocs: By default, Apache sends "Pragma: no-cache" with each document that was negotiated on the basis of content. This asks proxy servers not to cache the document. Uncommenting the following line disables this behavior, and proxies will be allowed to cache the documents.

#CacheNegotiatedDocs

UseCanonicalName: (new for 1.3) With this setting turned on, whenever Apache needs to construct a self-referencing URL (a URL that refers back to the server the response is coming from) it will use ServerName and Port to form a "canonical" name. With this setting off, Apache will use the
hostname:port that the client supplied, when possible. This also affects SERVER_NAME and SERVER_PORT in CGI scripts.

UseCanonicalName On

TypesConfig: Describes where the mime.types file (or equivalent) is to be found.

TypesConfig /etc/mime.types

DefaultType is the default MIME type the server will use for a document if it cannot otherwise determine one, such as from filename extensions.

If your server contains mostly text or HTML documents, "text/plain" is a good value. If most of your content is binary, such as applications or images, you may want to use "application/octet-stream" instead to keep browsers from trying to display binary files as though they are text.

DefaultType text/plain

The mod_mime_magic module allows the server to use various hints from the contents of the file itself to determine its type. The MIMEMagicFile directive tells the module where the hint definitions are located.

mod_mime_magic is not part of the default server (you have to add it yourself with a LoadModule [see the DSO paragraph in the 'Global Environment' section], or recompile the server and include mod_mime_magic as part of the configuration), so it's enclosed in an container.

This means that the MIMEMagicFile directive will only be processed if the module is part of the server.

MIMEMagicFile share/magic

HostnameLookups: Log the names of clients or just their IP addresses e.g., www.Apache.org (on) or 204.62.129.132 (off).

The default is off because it'd be overall better for the net if people had to knowingly turn this feature on, since enabling it means that each client request will result in AT LEAST one lookup request to thenameserver.

HostnameLookups Off

ErrorLog: The location of the error log file.

If you do not specify an ErrorLog directive within a container, error messages relating to that virtual host will be logged here. If you do define an error logfile for a container, that host's errors will be logged there and not here.

ErrorLog /var/log/httpd/error_log

LogLevel: Control the number of messages logged to the error_log.

Possible values include: debug, info, notice, warn, error, crit, alert, emerg.

LogLevel warn

The following directives define some format nicknames for use with a CustomLog directive (see below).

LogFormat "%h %l %u %t "%r" %>s %b "%{Referer}i" "%{User-Agent}i"" combined

LogFormat "%h %l %u %t "%r" %>s %b" common

LogFormat "%{Referer}i -> %U" referer

LogFormat "%{User-agent}i" agent

The location and format of the access logfile (Common Logfile Format).

If you do not define any access logfiles within a container, they will be logged here. Contrariwise, if you do define per- access logfiles, transactions will be logged therein and not in this file.

CustomLog /var/log/httpd/access_log common

If you would like to have agent and referer logfiles, uncomment the following directives.

CustomLog /var/log/httpd/referer_log referer

CustomLog /var/log/httpd/agent_log agent

If you prefer a single logfile with access, agent, and referrer information (Combined Logfile Format) you can use the following directive.

CustomLog /var/log/httpd/access_log combined

Optionally add a line containing the server version and virtual host name to server-generated pages (error documents, FTP directory listings, mod_status and mod_info output etc., but not CGI generated documents).

Set to "EMail" to also include a mailto: link to the ServerAdmin.

Set to one of: On | Off | EMail

ServerSignature On

Aliases: Add here as many aliases as you need (with no limit). The format is

Alias fakename realname

Note: If you include a trailing / on fakename then the server will require it to be present in the URL. So "/icons" isn't aliased in this example, only "/icons/"..

Alias /icons/ "/home/httpd/icons/"

Options Indexes MultiViews

AllowOverride None

Order allow,deny

Allow from all

ScriptAlias: This controls which directories contain server scripts.

ScriptAliases are essentially the same as Aliases, except that documents in the realname directory are treated as applications and run by the server when requested rather than as documents sent to the client.

The same rules about trailing "/" apply to ScriptAlias directives as to Alias.

ScriptAlias /cgi-bin/ "/home/httpd/cgi-bin/"

"/home/httpd/cgi-bin" should be changed to whatever your ScriptAliased

CGI directory exists, if you have that configured.

AllowOverride None

Options ExecCGI

Order allow,deny

Allow from all

Redirect: Allows you to tell clients about documents which used to exist in your server's namespace, but do not anymore. This allows you to tell the clients where to look for the relocated document.

Format: Redirect old-URL new-URL

Directives controlling the display of server-generated directory listings.

FancyIndexing: Asks whether you want fancy directory indexing or standard IndexOptions FancyIndexing

AddIcon* directives: Tell the server which icon to show for different files or filename extensions. These are only displayed for FancyIndexed directories.

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*

AddIconByType (IMG,/icons/image2.gif) image/*

AddIconByType (SND,/icons/sound2.gif) audio/*

AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe

AddIcon /icons/binhex.gif .hqx

AddIcon /icons/tar.gif .tar

AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv

AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip

AddIcon /icons/a.gif .ps .ai .eps

AddIcon /icons/layout.gif .html .shtml .htm .pdf

AddIcon /icons/text.gif .txt

AddIcon /icons/c.gif .c

AddIcon /icons/p.gif .pl .py

AddIcon /icons/f.gif .for

AddIcon /icons/dvi.gif .dvi

AddIcon /icons/uuencoded.gif .uu

AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl

AddIcon /icons/tex.gif .tex

AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..

AddIcon /icons/hand.right.gif README

AddIcon /icons/folder.gif ^^DIRECTORY^^

AddIcon /icons/blank.gif ^^BLANKICON^^

DefaultIcon: Which icon to show for files, which do not have an icon explicitly set.

DefaultIcon /icons/unknown.gif

AddDescription: Allows you to place a short description after a file in server-generated indexes. These are only displayed for FancyIndexed directories.

Format: AddDescription "description" filename

AddDescription "GZIP compressed document" .gz

AddDescription "tar archive" .tar

AddDescription "GZIP compressed tar archive" .tgz

ReadmeName: The name of the README file the server will look for by default, and append to directory listings.

HeaderName: the name of a file, which should be prepended to directory indexes.

The server will first look for name.html and include it if found. If name.html doesn't exist, the server will then look for name.txt and include it as plaintext if found.

ReadmeName README

HeaderName HEADER

IndexIgnore: A set of filenames which directory indexing should ignore and not include in the listing. Shell-style wildcarding is permitted.

IndexIgnore .??* *~ * HEADER* README* RCS CVS *,v *,t

AddEncoding: Allows you to have certain browsers (Mosaic/X 2.1+) uncompress information on the fly.

Note: Not all browsers support this. Despite the name similarity, the following Add* directives have nothing to do with the FancyIndexing customization directives above.

AddEncoding x-compress Z

AddEncoding x-gzip gz tgz

AddLanguage: Allows you to specify the language of a document. You can then use content negotiation to give a browser a file in a language it can understand. Note that the suffix does not have to be the same as the language keyword --- those with documents in Polish (whose net-standard language code is pl) may wish to use "AddLanguage pl .po" to avoid the ambiguity with the common suffix for perl scripts.

AddLanguage en .en

AddLanguage fr .fr

AddLanguage de .de

AddLanguage da .da

AddLanguage el .el

AddLanguage it .it

LanguagePriority: Allows you to give precedence to some languages in case of a tie during content negotiation.

Just list the languages in decreasing order of preference.

LanguagePriority en fr de

AddType: Allows you to tweak mime.types without actually editing it, or to make certain files to be certain types.

For example, the PHP3 module (not part of the Apache distribution - see http://www.php.net) will
typically use:

AddType application/x-httpd-php3 .php3

AddType application/x-httpd-php3-source .phps

The following is for PHP/FI (PHP2):

AddType application/x-httpd-php .phtml

AddType application/x-tar .tgz

AddHandler: Allows you to map certain file extensions to "handlers", actions unrelated to filetype. These can be either built into the server or added with the Action command (see below)

If you want to use server side includes, or CGI outside ScriptAliased directories, uncomment the following lines.

To use CGI scripts:

AddHandler cgi-script .cgi

To use server-parsed HTML files

AddType text/html .shtml

AddHandler server-parsed .shtml

Uncomment the following line to enable Apache's send-asis HTTP file feature

AddHandler send-as-is asis

If you wish to use server-parsed imagemap files, use

AddHandler imap-file map

To enable type maps, you might want to use

AddHandler type-map var

Action: Lets you define media types that will execute a script whenever a matching file is called. This eliminates the need for repeated URL pathnames for oft-used CGI file processors.

Format: Action media/type /cgi-script/location

Format: Action handler-name /cgi-script/location

MetaDir: Specifies the name of the directory in which Apache can find meta information files. These files contain additional HTTP headers to include when sending the document

MetaDir .web

MetaSuffix: Specifies the file name suffix for the file containing the meta information.

MetaSuffix .meta

5. Customizable error response

Customizable error response, the Apache style, comes in three flavors:

1) Plain text

ErrorDocument 500 "The server made a boo boo.

Note: The (") marks it as text, it does not get output.

2) Local redirects

ErrorDocument 404 /missing.html to redirect to local URL /missing.html

ErrorDocument 404 /cgi-bin/missing_handler.pl

Note: You can redirect to a script or a document using server-side-includes.

3) External redirects

ErrorDocument 402 some.other_server.com/subscription_info

Note: Many of the environment variables associated with the original request will not be available to such a script.

The following directives modify normal HTTP response behavior.

The first directive disables keepalive for Netscape 2.x and browsers that spoof it. There are known problems with these browser implementations. The second directive is for Microsoft Internet Explorer 4.0b2, which has a broken HTTP/1.1 implementation and does not properly support `keepalive' when it is used on 301 or 302 (redirect) responses.

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4.0b2;" nokeepalive downgrade-1.0 force-response-1.0

The following directive disables HTTP/1.1 responses to browsers, which are in violation of the HTTP/1.0 spec by not being able to grok a basic 1.1 response.

BrowserMatch "RealPlayer 4.0" force-response-1.0

BrowserMatch "Java/1.0" force-response-1.0

BrowserMatch "JDK/1.0" force-response-1.0

If the perl module is installed, this will be enabled.

<IfModule mod_perl.c>

Alias /perl/ /home/httpd/perl/

<Location /perl>

SetHandler perl-script

PerlHandler Apache::Registry

Options +ExecCGI

</Location>

</IfModule>

Allow http put (such as Netscape Gold's publish feature)

Use htpasswd to generate /etc/httpd/conf/passwd

You must unremark these two lines at the top of this file as well:

LoadModule put_module modules/mod_put.so

AddModule mod_put.c

Alias /upload /tmp

<Location /upload>

EnablePut On

AuthType Basic

AuthName Temporary

AuthUserFile /etc/httpd/conf/passwd

EnableDelete Off

umask 007

<Limit PUT>

require valid-user

</Limit>

</Location>

To allow server status reports, use servername/server-status and change the ".your_domain.com" to match your domain to enable.

<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from .your_domain.com

</Location>

To allow remote server configuration reports go to servername/server-info (requires that mod_info.c be loaded), and now change the ".your_domain.com" to match your domain to enable.

<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from .your_domain.com

</Location>

You can allow access to local system documentation from localhost by:

Alias /doc/ /usr/doc/

<Location /doc>

order deny,allow

deny from all

allow from localhost

Options Indexes FollowSymLinks

</Location>

Checking attacks

There have been reports of people trying to abuse an old bug from pre-1.1 days. This bug involved a CGI script distributed as a part of Apache. By uncommenting these lines you can redirect these attacks to a logging script on phf.Apache.org. Or, you can record them yourself, using the script support/phf_abuse_log.cgi.

<Location /cgi-bin/phf*>

Deny from all

ErrorDocument 403 < a href=http://phf.Apache.org/phf_abuse_log.cgi> Apache.org/phf_abuse_log.cgi

</Location>

Proxy Server directives
Uncomment the following lines to enable the proxy server

<IfModule mod_proxy.c>

ProxyRequests On

<Directory proxy:*>

Order deny,allow

Deny from all

Allow froms .your_domain.com

</Directory>

Enable/disable the handling of HTTP/1.1 "Via:" headers.

("Full" adds the server version; "Block" removes all outgoing Via: headers)

Set to one of: Off | On | Full | Block

ProxyVia On

To enable the cache as well, edit and uncomment the following lines:

(no cacheing without CacheRoot)

CacheRoot "/var/cache/httpd"

CacheSize 5

CacheGcInterval 4

CacheMaxExpire 24

CacheLastModifiedFactor 0.1

CacheDefaultExpire 1

NoCache a_domain.com another_domain.edu joes.garage_sale.com

</IfModule>

6. Virtual hosts
VirtualHost: If you want to maintain multiple domains/hostnames on your machine you can setup VirtualHost containers for them. Please see the documentation here for further details before you try to setup virtual hosts. You may use the command line option '-S' to verify your virtual host configuration.

If you want to use name-based virtual hosts, you need to define at least one IP address (and port number) for them.

NameVirtualHost 12.34.56.78:80

NameVirtualHost 12.34.56.78

NameVirtualHost 192.192.192.1

VirtualHost example

Almost any Apache directive may go into a VirtualHost container.

<VirtualHost ip.address.of.host.some_domain.com>

ServerAdmin webmaster@host.some_domain.com

DocumentRoot /www/docs/host.some_domain.com

ServerName host.some_domain.com

ErrorLog logs/host.some_domain.com-error_log

CustomLog logs/host.some_domain.com-access_log common

</VirtualHost>

<VirtualHost default:*>

</VirtualHost>

<VirtualHost 192.192.192.1>

ServerAdmin amby@goldie.com

DocumentRoot /docfile

ServerName www.goldie.com

ErrorLog logs/err

</VirtualHost>

<VirtualHost 192.192.192.57>

ServerAdmin amby@failure.com

DocumentRoot /htdoc

ServerName www.failure.com

ErrorLog /home/err

</VirtualHost>

<VirtualHost 192.192.192.90>

ServerName www.chiku.com

DocumentRoot /home/chinu/public_html

</VirtualHost>

<VirtualHost 192.192.192.91>

ServerName www.chik.com

DocumentRoot /home/

</VirtualHost>

<VirtualHost 192.192.192.11>

ServerName www.chik.com

DocumentRoot /home/

</VirtualHost>

After editing /etc/httpd/conf/httpd/conf properly, start /etc/rc.d/init.d/httpd restart.

Explanation of this file

1) note means comment (if removed then it means active state)

The main macro, which should be taken in to account for activation, are:

Documentroot

Serverroot

Servername

User_dir

Access_log

Error_log

Server-alias

Script-alias

Now before we go on to explanations lets take an example to host it both, without password protection and with password protection. Lets design an html page and then communicate with the server. After this we will figure out where to put the html and the server programme, which communicates with html in all the three cases.

Normal Hosting

Lets say our machine ip is: 192.192.192.1 and the machine name is kshounish1.linux.com. And these entries are there in /etc/hosts file:

cd /home/httpd/html

vi index.html

then write

<form method=get action=/cgi-bin/a.pl>

<input type=submit>

</form>

</html>

The above code says that a form and a button of submit type are made which will call a.pl when clicked.

cd /home/httpd/cgi-bin

vi a.pl

Then write exactly whats given below if you are not aware of perl-cgi programming.

#!/usr/bin/perl

print "Content-type:text/html nn";

print "

Welcome to my site

";

print "you have accessed through $ENV";

print"hope u visit again

";

After this comes out, the very first thing you do is chmod 755 a.pl (very important) or else the file won't be executed due to the Web server architecture restriction on this particular directory.

So what happens is, when you write lynx http://127.0.0.1/or lynx http://192.192.192.2, or http://kshounish1.linux.com

, this 127.0.0.1 or 192.192.192.1 or kshounish.linux.com is mapped with the directory /home/httpd/html/index.html by default.

Now people might ask why are we going /home/httpd/html for html files and why do we go for /home/httpd/cgi-bin. Well, it is just because of the macro.

Documentroot /home/httpd/html and

Script-alias /home/httpd/cgi-bin/ /cgi-bin/

<Directory "/home/httpd/html">

Options Indexes Includes FollowSymLinks

AllowOverride all

Order allow,deny

Allow from all

</Directory>

In above directive, `options' is the facility on that directory. Indexes

The default file to be accessed is index.html.

`AllowOverrride' all or none: Sometimes user wants to put password protection to its directory of information. This can only be done if AllowOverrride all is written under the <Directory> </Directory>

Can you password protect any directory? Yes you can (discussed later in password protection topic).

Macro in /etc/httpd/conf/httpd.conf

You may ask why is action=/cgi-bin/a.pl. It is just because the script alis macro tells that there is no need to give such a long path its better to give the short alias naming of directory. So, in normal hosting of html, files should be in /home/httpd/html/. And normal cgi file should stay at /home/httpd/cgi-bin with 755 permissions.

Hosting in Virtual Directory

Why is it needed?

We have just seen that http://127.0.0.1/ is mapped with /home/httpd/html/index.html. And if the file is not index.html, let's say a.html, then we have to call http://127.0.0.1/a.html. Now suppose a client also wants not to write the file name after the URL then in that case the Web server says, "create a login for each user who wants to host his site and then make a directory called "public_html" under login directory and now put index.html under that directory". For that, the directive in /etc/httpd/conf/httpd.conf should look like UserDir public_html

<Directory /home/*/public_html>

AllowOverride FileInfo AuthConfig Limit

Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec

<Limit GET POST OPTIONS PROPFIND>

Order allow,deny

Allow from all

</Limit>

<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>

Order deny,allow

Deny from all

</Limit>

</Directory>

Remember this directives are basically attached with " " so remove as shown above

Now, do the following:

example

1) adduser kshounish

2) passwd kshounish

3) exit

login:kshounish

password:*******

4)$ mkdir public_html

5)$cd public_html

6)$vi index.html

And write the code

<html>

see the virtual login hosting

<form method=post action=/cgi-bin/b.pl>

<input type=submit>

</form>

</html>

7)$cd /home/httpd/cgi-bin/

8)$vi b.pl

And write

#!/usr/bin/perl

print "Content-type:text/html nn";

print "welcome in my virtual site

";

print "you have accessed through $ENV"; print"hope u visit again

";

Now go to Netscape and say

http://kshounish1.linux.com/~kshounish/ or say `$lynx http://192.192.192.2/~kshounish'. It will take you to /home/kshounish/public_html/index.html. Do it for other logins too.

Hosting in Virtual Domain

This is the actual way of hosting Web pages. In first case the way of accessing was < a href=http://kshounish1.linux.com> http://kshounish1.linux.com

In second case it was < a href=http://kshounish1.linux.com/~kshounish> http://kshounish1.linux.com/~kshounish

But what if you want goldie.linux.com and sudhir.linux.com in the same machine? Then there are two ways of hosting:

Shared hosting: In this technique, multiple sites are placed in same IP address of same machine.

Independent hosting: In this case each site will have independent IP on the same Ethernet card of same machine.

For Shared Hosting the directive you need is NameVirtualHost 192.192.192.1

<VirtualHost 192.192.192.1>

DocumentRoot /docfile

ServerName goldie.linux.com

ErrorLog logs/err

</VirtualHost>

<VirtualHost 192.192.192.1>

DocumentRoot /htdoc

ServerName sudhir.linux.com

ErrorLog /home/err

</VirtualHost>

<VirtualHost 192.192.192.1>

ServerName chiku.linux.com

DocumentRoot /chiku

</VirtualHost>

Remember the entire directory in documentroot has to be manually created.

In above case /htdoc,/chiku,/docfile directory has to be created and each directory will have index.html in each DocumentRoot specified. The above-mentioned thing is done.

Independent Hosting

ifconfig eth0:1 192.192.192.2

ifconfig eth0 :2 192.192.192.3

ifconfig eth0:3 192.192.192.4

In this case the directive is BindAddress *

<VirtualHost 192.192.192.2>

DocumentRoot /doc

ServerName goldie.linux.com

ErrorLog logs/err

</VirtualHost>

<VirtualHost 192.192.192.3>

DocumentRoot /htoc

ServerName sudhir.linux.com

ErrorLog /home/err

</VirtualHost>

<VirtualHost 192.192.192.4>

ServerName chik.linux.com

DocumentRoot /chik

</VirtualHost>

7. DNS Effect

Now in both the cases the DNS have to be upated in following way:

Assuming domain linux.com and machine kshounish1, see the following change

invi /var/named/linux.com.

IN SOA kshounish1.linux.com root.kshounish1.linux.com (2000011602 ; serial

3600 ; refresh

900 ; retry

1209600 ; expire

43200 ; default_ttl

)

@ IN NS kshounish1.linux.com.

kshounish1 IN A 192.192.192.1

sudhir IN A 192.192.192.1

chiku IN A 192.192.192.1

goldie IN A 192.192.192.1

sudhu IN A 192.192.192.2

gold IN A 192.192.192.3

chik IN A 192.192.192.4

Then vi /var/named/192.192.192.reverse

@ IN SOA kshounish1.linux.com root.kshounish1.linux.com (

2000011601 ; serial

3600 ; refresh

900 ; retry

1209600 ; expire

43200 ; default_ttl

)

@ IN NS kshounish1.linux.com.

1 IN PTR kshounish1.linux.com.

1 IN PTR sudhir.linux.com.

1 IN PTR goldie.linux.com.

1 IN PTR chiku.linux.com.

2 IN PTR sudhu.linux.com.

3 IN PTR chik.linux.com.

4 IN PTR gold.linux.com.

Then /etc/rc.d/init.d/named restart

Remember whenever you edit /etc/httpd/conf/httpd.conf after closing it restart /etc/rc.d/init.d/httpd restart

8. Password Protection to a Directory

Sometimes people want to get some important information. For this purpose, password authentication can be given to a directory and keep the important file out there, secure.

When we open the httpd.conf file we find something looks like: <Directory /home/httpd/html>

AllowOverride none

</Directory>

make it AllowOverrride all, which means user can set the rules on that directory and override the default configuration for that directory and for that another few things have to be done

AccessFileName .htaccess

This directive means the directory where allowOverride is `ALL', should have the .htaccess in its directory

step vi /home/httpd/html/.htaccess

Then write

AuthName password needed

AuthUserFile /home/httpd/html/password(where to keep password)

AuthType basic

Require valid-user

Then come out from that file and run the command htpasswd -c -m /home/httpd/html/password goldie (remember this login is only for Web not for shell)

Then go to Netscape or IE of any machine and write http://192.192.192.1

It will ask for the password give the login name as goldie and the password as the one, which was given by htpasswd command. And the process is over. With this we come to end of our three part tutorial on Web server.
Hope this Material Course has helped you understand a Web server and its functioning.

III. Building and configuring the wu-ftp server

1. Introduction

What is FTP ?

FTP is a method to transfer files (documents, images, ...) over the Internet from one computer to another. FTP stands for File Transfer Protocol.

What do I need to transfer files by FTP?

The best thing you can use is a specific FTP program. For PC you can use WSFTP, for Macintosh there is Fetch. Both can be downloaded from our anonymous FTP server (WSFTP, Fetch) and both are free to use for educational institutions.

Note: nowadays, you can also use recent Internet/Web browsers to transfer files with FTP.

How does it work?

FTP uses the so-called client/server model. On one side, there is the customer - you - and on the other side there is a server, on which files are stored.

If one wishes to store or retrieve files to/from a server, simply start your FTP program, and specify the hostname of the server, and a username and password. Once you have logged on succesfully, you will be able to browse through the files and directories on the remote server, and upload and download files.

2. Configuring the wu-ftpd server for a guest user account

The next step is to edit the configuration files for the wu-ftpd server. This consists of editing vari-

ous system files and setting up various directives in a new created ftpaccess file.

1. Login (as root) if not already done. root#

2. Next, add the appropriate entry to the /etc/inetd/inetd.conf file, the key part being

to reference the same service name as is in the /etc/services file

ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd -laio

Note:

The example in this document uses the following options for invoking in.ftpd:

-l,-a,-i, and -o

(provide additional logging information, use the ftpaccess file, log uploads, and log

downloads).

Make sure name of the service (in.ftp in this example) matches in both the

/etc/inet/inetd.conf and the /etc/services files.

Since in this example the -a option is being used, an ftpaccess file must be placed

in /etc/ftpd!

A working sample is provided right below. This file must be copied right into

/etc/ftpd or wherever specified in src/pathnames.h..

3. Update the entries in the /etc/syslog.conf file. The following places the maximum

number of messages into the /var/adm/messages file

daemon.info /var/adm/messages

daemon.notice

/var/adm/messages

daemon.debug

/var/adm/messages

Note:

Once you have made the changes to the /etc/syslog.conf file, be sure to restart

the syslogd process (kill -1 pid, where pid is the process id of syslogd).

4. Create a user account with the following type of entry in the system /etc/passwd

file

tester:x:10001:10000:ftpd test user:/export/home/web/tester:/etc/ftponly

Do so manually, or use adduser or whatever your UNIX system supports.

5. Create the appropriate group entry in the system

/etc/group file:

client::10000:tester

Do not forget to set the password for new user "

tester".

5. Make sure a file /etc/ftponly exists and that the file /etc/shells contains that entry.

root# touch /etc/ftponly

root# vi /etc/shells

Add the following line: /etc/ftponly

6. Set up the ftpaccess file; see below for a good example of an ftpaccess file full of

configuration options. See the man page for ftpaccess.5 for a complete explanation

Items that you should specifically configure are

general wu-ftpd server configuration

class client guest *

class cramer guest *

class sunrise guest *

limit client 3 Any /etc/msgs/msg.dead

limit cramer 3 Any /etc/msgs/msg.dead

limit sunrise 3 Any /etc/msgs/msg.dead

#readme README* login

#readme README* cwd=*

#greeting brief

greeting terse

message /welcome.msg login

#message .message cwd=*

compress yes client,cramer,sunrise

gzip yes client,cramer,sunrise

tar yes client,cramer,sunrise

ls yes client,cramer,sunrise

log commands guest

log transfers guest inbound,outbound

#shutdown /etc/shutmsg

delete no guest

overwrite no guest

#rename yes guest

rename no guest

chmod no guest

umask no guest

#cdpath /

cdpath /public

upload /export/home/web/ * no

upload /export/home/web/ /cramer/public/uploads/ yes cramer cramer 0660 nodirs

upload /export/home/web/ /sunrise/public/uploads/ yes sunrise sunrise 0660 nodirs

upload /export/home/web/ /tester/public/uploads/ yes tester client 0660 nodirs

path-filter guest /etc/pathmsg ^[-A-Za-z0-9_\.]*$ ^\. ^-

loginfails 3

guest-root /export/home/web/cramer cramer

guest-root /export/home/web/sunrise sunrise

guest-root /export/home/web/tester tester

guestuser *

guestgroup client,cramer,sunrise

restricted-uid *

restricted-gid *

#email user@hostname

7. Create the home directory of the test user if not already done and set its owner-

ships and protections.

root# mkdir /export/home/web/tester

root# chown tester:client /export/home/web/tester

root# chmod 755 /export/home/web/tester

8. Build the directory structure under the test user account. Create the /etc, /usr, /dev,

/devices, /lib, /bin, /sbin, /public and any other directory you need in the directory

the chroot() is done into.

root# cd /export/home/web/tester

root# mkdir etc dev usr bin sbin public

root# mkdir œp usr/share/lib/zoneinfo

root# mkdir œp devices/pseudo

root# cd ../usr

root# mkdir lib bin sbin

root# cd ../usr

root# chown œR root:daemon etc dev devices usr bin sbin public

root# chmod œR 111 etc dev devices usr bin sbin

root# chmod 655 public

root# cd public

root# mkdir downloads uploads

root# chown root:daemon downloads uploads

root# chmod 777 uploads

root# chmod 755 downloads

9. Populate the /etc directory in the chroot’ed area.

Copy and edit all necessary files.

root# cp -p /etc/passwd /export/home/web/tester/etc/passwd

root# cp -p /etc/group /export/home/web/tester/etc/group

Delete all obsolete lines and modify the others so that the httpd.conf file looks as

stated below.

passwd file

root:x:0:1::/:

tester:x:10001:10000::/tester:

group file

root::0:root

client::10000:tester

10. Do not forget to crate message files declared in the /etc/ftpaccess file. Possible

message files are:

msg.dead with target directory /export/home/web/tester/etc/msgs/

welcome.msg with target directory /export/home/web/tester/

shutmsg with target directory /export/home/web/tester/etc/

pathmsg with target directory /export/home/web/tester/etc/

11. Populate the /usr/bin/ directory in the chroot’ed area.

Copy and edit all necessary files.

root# cp œp /usr/bin/ls /export/home/web/tester/usr/bin/ls

root# cp œp /usr/bin/compress \

/export/home/web/tester/usr/bin/compress

root# cp œp /usr/bin/gzip /export/home/web/tester/usr/bin/gzip

root# cd /export/home/web/tester/usr/bin

root# chown root:bin ls compress gzip

root# chmod 555 ls compress gzip

Populate the /usr/sbin/ directory in the chroot’ed area.

12. Copy and edit all necessary files.

root# cp œp /usr/sbin/tar /export/home/web/tester/usr/sbin/tar

root# cd /export/home/web/tester/usr/sbin

root# chown root:bin tar

root# chmod 555 tar

13. Populate the /usr/lib/ directory in the chroot’ed area.

Copy and edit all necessary files.

root# cp œp /usr/lib/ld.so.1 /export/home/web/usr/lib/ld.so.1

Copy also the following libraries:

libc.so.1

libcmd.so.1

libdl.so.1

libgen.so.1

libmp.so.2

libnsl.so.1

libsec.so.1

libsocket.so.1

nss_compat.so.1

nss_dns.so.1

nss_files.so.1

nss_nis.so.1

nss_nisplus.so.1

nss_xfn.so.1

straddr.so

straddr.so.2

Make sure that for each library file permission are 755 and ownership is root:bin.

Note:

Use: truss -f chroot ~ftp /bin/ls œl

To see which libraries are being used by "ls" and by "dir"; you may also have to use

"ldd" on the libraries accessed by "ls" to ferret out additional dependencies.

14. Populate the /usr/share/lib/zoneinfo/ directory in the chroot’ed area.

Copy and edit all necessary files.

root# cp œp /usr/share/lib/zoneinfo/MET \

/export/home/web/tester/usr/share/lib/zoneinfo/MET

15. Populate the /sbin/ directory in the chroot’ed area.

Copy and edit all necessary files.

root# cp œp /sbin/sh /export/home/web/tester/sbin/sh

root# cd /export/home/web/tester/sbin/sh

root# chown root:bin sh

root# chmod 555 sh

16. Populate the /bin/ directory in the chroot’ed area.

Copy and edit all necessary files.

Create the necessary soft links

root# cd /export/home/web/tester/bin

root# ln œs ../usr/bin/compress compress

root# ln œs ../usr/bin/gzip gzip

root# ln œs ../usr/bin/ls ls

root# ln œs ../usr/sbin/tar tar

root# cd ..

17. Redirecting the lib directory.

root# ln-s /usr/lib/ /lib

18. Populate the /dev/ directory in the chroot’ed area.

Copy and edit all necessary files.

Create the necessary soft links

root# cd /export/home/web/tester/dev

root# ln œs ../devices/pseudo/zero zero

root# ln œs ../devices/pseudo/tcp tcp

root# ln œs ../devices/pseudo/udp udp

root# ln œs ../devices/pseudo/ticotsord ticotsord

root# ln œs ../devices/pseudo/null null

root# ln œs ../devices/pseudo/ticlts ticlts

root# ln œs ../devices/pseudo/ticots ticots

19. Change to the original /devices/pseudo/ directory and retrieve all minor and major

numbers for the files listed in the step above (step 19).

root# cd /devices/pseudo/

root# ls œlL /devices/pseudo/mm@0:zero

root# ls œlL /devices/pseudo/mm@0:tcp

root# ls œlL /devices/pseudo/mm@0:udp

root# ls œlL /devices/pseudo/mm@0:ticotsord

root# ls œlL /devices/pseudo/mm@0:null

root# ls œlL /devices/pseudo/mm@0:ticlts

root# ls œlL /devices/pseudo/mm@0:ticots

example:

crw-rw-rw- 1 root sys 13, 12 Aug 10 2001

/devices/pseudo/mm@0:zero

Key:

c means character file

major number is 13

minor number is 12

end of example

20. Populate the /devices/pseudo/ directory in the chroot’ed area.

Attention:

Do NOT copy device files!

Crate each device file in the tester directory using the information you retrieved in

root# cd /export/home/web/tester/devices/pseudo

root# mknod zero c 13 12

root# mknod tcp c 42 0

root# mknod udp 41 0

root# mknod ticotsord 105 1

root# mknod null 13 2

root# mknod ticlts 105 2

root# mknod ticots 105 0

21. Finally add some security touches.

root# cd /export/home/web/tester

root# touch .rhosts .forward

root# chmod 400 .rhosts .forward

IV. Mail Server using sendmail

1. Introduction.

We're going to begin by following a complete mail transaction: the sending of an email, its travel across the internet, its acceptance at your local Mail server, and then its download to an email program. We'll briefly discuss email concepts and terms as we go along. Next we'll go over an example mail server setup using Red Hat Linux 8.0 and its default settings. We'll end with a brief look at Sendmail and explore the mysteries of its main configuration file: sendmail.cf.

2. Sendmail Configuration
sendmail(8) is the default Mail Transfer Agent (MTA) in Linux. sendmail's job is to accept mail from Mail User Agents (MUA) and deliver it to the appropriate mailer as defined by its configuration file. sendmail can also accept network connections and deliver mail to local mailboxes or deliver it to another program.

sendmail uses the following configuration files:

	Filename
	Function

	/etc/mail/access
	sendmail access database file

	/etc/mail/aliases
	Mailbox aliases

	/etc/mail/local-host-names
	Lists of hosts sendmail accepts mail for

	/etc/mail/mailer.conf
	Mailer program configuration

	/etc/mail/mailertable
	Mailer delivery table

	/etc/mail/sendmail.cf
	sendmail master configuration file

	/etc/mail/virtusertable
	Virtual users and domain tables

/etc/mail/access

The access database defines what host(s) or IP addresses have access to the local mail server and what kind of access they have. Hosts can be listed as OK, REJECT, RELAY or simply passed to sendmail's error handling routine with a given mailer error. Hosts that are listed as OK, which is the default, are allowed to send mail to this host as long as the mail's final destination is the local machine. Hosts that are listed as REJECT are rejected for all mail connections. Hosts that have the RELAY option for their hostname are allowed to send mail for any destination through this mail server.

Example 20-1. Configuring the sendmail Access Database

cyberspammer.com 550 We don't accept mail from spammers

FREE.STEALTH.MAILER@ 550 We don't accept mail from spammers

another.source.of.spam REJECT

okay.cyberspammer.com OK

128.32 RELAY

In this example we have five entries. Mail senders that match the left hand side of the table are affected by the action on the right side of the table. The first two examples give an error code to sendmail's error handling routine. The message is printed to the remote host when a mail matches the left hand side of the table. The next entry rejects mail from a specific host on the Internet, another.source.of.spam. The next entry accepts mail connections from a host okay.cyberspammer.com, which is more exact than the cyberspammer.com line above. More specific matches override less exact matches. The last entry allows relaying of electronic mail from hosts with an IP address that begins with 128.32. These hosts would be able to send mail through this mail server that are destined for other mail servers.

When this file is updated, you need to run make in /etc/mail/ to update the database.

/etc/mail/aliases

The aliases database contains a list of virtual mailboxes that are expanded to other user(s), files, programs or other aliases. Here are a few examples that can be used in /etc/mail/aliases:

Example 20-2. Mail Aliases

root: localuser

ftp-bugs: joe,eric,paul

bit.bucket: /dev/null

procmail: "|/usr/local/bin/procmail"

The file format is simple; the mailbox name on the left side of the colon is expanded to the target(s) on the right. The first example simply expands the mailbox root to the mailbox localuser, which is then looked up again in the aliases database. If no match is found, then the message is delivered to the local user localuser. The next example shows a mail list. Mail to the mailbox ftp-bugs is expanded to the three local mailboxes joe, eric, and paul. Note that a remote mailbox could be specified as user@example.com. The next example shows writing mail to a file, in this case /dev/null. The last example shows sending mail to a program, in this case the mail message is written to the standard input of /usr/local/bin/procmail through a Unix pipe.

When this file is updated, you need to run make in /etc/mail/ to update the database.

/etc/mail/local-host-names

This is a list of hostnames sendmail(8) is to accept as the local host name. Place any domains or hosts that sendmail is to be receiving mail for. For example, if this mail server was to accept mail for the domain example.com and the host mail.example.com, its local-host-names might look something like this:

example.com

mail.example.com

When this file is updated, sendmail(8) needs to be restarted to read the changes.

/etc/mail/sendmail.cf

sendmail's master configuration file, sendmail.cf controls the overall behavior of sendmail, including everything from rewriting e-mail addresses to printing rejection messages to remote mail servers. Naturally, with such a diverse role, this configuration file is quite complex and its details are a bit out of the scope of this section. Fortunately, this file rarely needs to be changed for standard mail servers.

The master sendmail configuration file can be built from m4(1) macros that define the features and behavior of sendmail. Please see /usr/src/contrib/sendmail/cf/README for some of the details.

When changes to this file are made, sendmail needs to be restarted for the changes to take effect.

/etc/mail/virtusertable

The virtusertable maps mail addresses for virtual domains and mailboxes to real mailboxes. These mailboxes can be local, remote, aliases defined in /etc/mail/aliases or files.

Example 20-3. Example Virtual Domain Mail Map

root@example.com root

postmaster@example.com postmaster@noc.example.net

@example.com joe

In the above example, we have a mapping for a domain example.com. This file is processed in a first match order down the file. The first item maps root@example.com to the local mailbox root. The next entry maps postmaster@example.com to the mailbox postmaster on the host noc.example.net. Finally, if nothing from example.com has matched so far, it will match the last mapping, which matches every other mail message addressed to someone at example.com. This will be mapped to the local mailbox joe.

PAGE
2

