Linux System Administration

1. The Philosophy of System Administration

Although the specifics of being a system administrator may change from platform to platform, there are underlying themes that do not. It is these themes that make up the philosophy of system administration.

Here are those themes:

· Automate everything

· Document everything

· Communicate as much as possible

· Know your resources

· Know your users

· Know your business

Automate Everything

Most system administrators are outnumbered — either by their users, their systems, or both. In many cases, automation is the only way to keep up. In general, anything done more than once should be looked at as a possible candidate for automation.

Here are some commonly automated tasks:

· Free disk space checking and reporting

· Backups

· System performance data collection

· User account maintenance (creation, deletion, etc.)

· Business-specific functions (pushing new data to a Web server, running monthly/quarterly/yearly reports, etc.)

This list is by no means complete; the functions automated by system administrators are only limited by an administrator's willingness to write the necessary scripts. In this case, being lazy (and making the computer do more of the mundane work) is actually a good thing.

Document Everything

If given the choice between installing a brand-new server and writing a procedural document on performing system backups, the average system administrator would install the new server every time. While this is not at all unusual, the fact is that you must document what you do. Many system administrators will put off doing the necessary documentation for a variety of reasons:

Communicate as Much as Possible

When it comes to your users, you can never communicate too much. Be aware that small system changes you might think are practically unnoticeable could very well completely confuse the administrative assistant in Human Resources.

The method by which you communicate with your users will vary according to your organization. Some organizations use email; others, an internal website. Still others may rely on Usenet news or IRC. A sheet of paper tacked to a bulletin board in the breakroom may even suffice at some places. In any case, use whatever method(s) that work well at your organization.

In general, it is best to follow this somewhat-paraphrased approach used in writing newspaper stories:

1. Tell your users what you are going to do

2. Tell your users what you are doing

3. Tell your users what you have done

Know Your Resources

System administration is mostly a matter of balancing available resources against the people and programs that use those resources. Therefore, your career as a system administrator will be a short and stress-filled one unless you fully understand the resources you have at your disposal.

Some of the resources are ones that seem pretty obvious:

· System resources, such as available processing power, memory, and disk space

· Network bandwidth

· Available money from the IT budget

Know Your Users

Although some people bristle at the term "users" (perhaps due to some system administrators' use of the term in a derogatory manner), it is used here with no such connotation implied. Users are those people that use the systems and resources for which you are responsible — no more, and no less. As such, they are central to your ability to successfully administer your systems; without understanding your users, how can you understand the system resources they will require?

For example, consider a bank teller. A bank teller will use a strictly-defined set of applications, and requires little in the way of system resources. A software engineer, on the other hand, may use many different applications, and will always welcome more system resources (for faster build times). Two entirely different users with two entirely different needs. Make sure you learn as much about your users as you can.

Know Your Business

Whether you work for a large, multinational corporation or a small community college, you must still understand the nature of the business environment in which you work. This can be boiled down to one question:

What is the purpose of the systems you administer?

The key point here is to understand your systems' purpose in a more global sense:

· Applications that must be run within certain time frames, such as at the end of a month, quarter, or year

· The times during which system maintenance may be done

· New technologies that could be used to resolve long-standing business problems

By taking into account your organization's business, you will find that your day-to-day decisions will be better for your users. And for you.

2. Boot Process, Init, and Shutdown

An important and powerful aspect of Red Hat Linux is the open, user-configurable method it uses for starting the operating system. Users are free to configure many aspects of the boot process, including specifying the programs launched at boot-time. Similarly, system shutdown gracefully terminates processes in an organized and configurable way, although customization of this process is rarely required.

Understanding how the boot and shutdown processes work not only allows customization of Red Hat Linux, but also makes it easier to troubleshoot problems related to starting or shutting down the system.

The Boot Process

Below are the basic stages of the boot process for an x86 system:

1. The system BIOS checks the system and launches the first stage boot loader on the MBR of the primary hard disk.

2. The first stage boot loader loads itself into memory and launches the second stage boot loader from the /boot/ partition.

3. The second stage boot loader loads the kernel into memory, which in turn loads any necessary modules and mounts the root partition read-only.

4. The kernel transfers control of the boot process to the /sbin/init program.

5. The /sbin/init program loads all services and user-space tools, and mounts all partitions listed in /etc/fstab.

6. The user is presented with a login prompt for the freshly booted Linux system.

Because configuration of the boot process is more common than the customization of the shutdown process, the remainder of this chapter discusses in detail how the boot process works and how it can be customized to suite specific needs.

SysV Init Runlevels

The SysV init runlevel system provides a standard process for controlling which programs init launches or halts when initializing a runlevel. SysV init was chosen because it is easier to use and more flexible than the traditional BSD-style init process.

The configuration files for SysV init are located in the /etc/rc.d/ directory. Within this directory, are the rc, rc.local, rc.sysinit, and, optionally, the rc.serial scripts as well as the following directories:

	init.d/

rc0.d/

rc1.d/

rc2.d/

rc3.d/

rc4.d/

rc5.d/

rc6.d/

The init.d/ directory contains the scripts used by the /sbin/init command when controlling services. Each of the numbered directories represent the six default runlevels configured by default under Red Hat Linux.

Runlevels

Runlevels are a state, or mode, defined by the services listed in the SysV /etc/rc.d/rc<x>.d/ directory, where <x> is the number of the runlevel.

The idea behind SysV init runlevels revolves around the fact that different systems can be used in a different ways. For example, a server runs more efficiently without the drag on system resources created by the X Window System. Other times, a system administrator may need to operate the system at a lower runlevel to perform diagnostic tasks, like fixing disk corruption in runlevel 1, when no other users can possibly be on the system.

The characteristics of a given runlevel determines which services are halted and started by init. For instance, runlevel 1 (single user mode) halts any network services, while runlevel 3 starts these services. By assigning specific services to be halted or started on a given runlevel, init can quickly change the mode of the machine without the user manually stopping and starting services.

The following runlevels are defined by default for Red Hat Linux:

· 0 — Halt

· 1 — Single-user text mode

· 2 — Not used (user-definable)

· 3 — Full multi-user text mode

· 4 — Not used (user-definable)

· 5 — Full multi-user graphical mode (with an X-based login screen)

· 6 — Reboot

In general, users operate Red Hat Linux at runlevel 3 or runlevel 5 — both full multi-user modes. Users sometimes customize runlevels 2 and 4 to meet specific needs. since they are not used.

The default runlevel for the system is listed in /etc/inittab. To find out the default runlevel for a system, look for the line similar to the one below near the top of /etc/inittab:

	id:5:initdefault:

The default runlevel listed in the example above is five, as the number after the first colon indicates. To change it, edit /etc/inittab as root.

Shutting Down

To shut down Red Hat Linux, the root user may issue the /sbin/shutdown command. The shutdown man page has a complete list of options, but the two most common uses are:

	/sbin/shutdown -h now
/sbin/shutdown -r now

After shutting everything down, the -h option will halt the machine, and the -r option will reboot.

Non-root users can use the reboot and halt commands to shut down the system while in runlevels 1 through 5. However, not all Linux operating systems support this feature.

If the computer does not power itself down, be careful not turn off the computer until a message appears indicating that the system is halted.

Failure to wait for this message can mean that not all the hard drive partitions are unmounted, and can lead to file system corruption.

Changing Runlevels at Boot Time

Under Red Hat Linux, it is possible to change the default runlevel at boot time.

If using LILO, access the boot: prompt by typing [Ctrl]-[X]. Then type:

	linux <runlevel-number>

In this command, replace <runlevel-number> with either the number of the runlevel to boot into (1 through 5), or the words single or emergency.

If using GRUB, follow these steps:

· In the graphical GRUB boot loader screen, select the Red Hat Linux boot label and press [e] to edit it.

· Arrow down to the kernel line and press [e] to edit it.

· At the prompt, type the number of the runlevel you wish to boot into (1 through 5), or the words single or emergency and press [Enter].

· You will be returned to the GRUB screen with the kernel information. Press the [b] key to boot the system

3. File System Hierarchy Standard (FHS)

Red Hat is committed to the Filesystem Hierarchy Standard (FHS), a collaborative document that defines the names and locations of many files and directories.

The FHS document is the authoritative reference to any FHS-compliant file system, but the standard leaves many areas undefined or extensible. This section is an overview of the standard and a description of the parts of the file system not covered by the standard.

The /dev/ Directory

The /dev/ directory contains file system entries which represent devices that are attached to the system. These files are essential for the system to function properly.

The /etc/ Directory

The /etc/ directory is reserved for configuration files that are local to the machine. No binaries are to be put in /etc/. Any binaries that were once located in /etc/ should be placed into /sbin/ or possibly /bin/.

The X11/ and skel/ directories are subdirectories of the /etc/ directory:

	/etc

 |- X11/

 |- skel/

The /etc/X11/ directory is for X11 configuration files such as XF86Config. The /etc/skel/ directory is for "skeleton" user files, which are used to populate a home directory when a user is first created.

The /lib/ Directory

The /lib/ directory should contain only those libraries that are needed to execute the binaries in /bin/ and /sbin/. These shared library images are particularly important for booting the system and executing commands within the root file system.

The /mnt/ Directory

The /mnt/ directory is for temporarily mounted file systems, such as CD-ROMs and floppy disks.

The /opt/ Directory

The /opt/ directory provides storage for large, static application software packages.

A package placing files in the /opt/ directory creates a directory bearing the same name as the package. This directory in turn holds files that otherwise would be scattered throughout the file system, giving the system administrator an easy way to determine the role of each file within a particular package.

For example, if sample is the name of a particular software package located within the /opt/ directory, then all of its files could be placed within directories inside the /opt/sample/ directory, such as /opt/sample/bin/ for binaries and /opt/sample/man/ for manual pages.

Large packages that encompass many different sub-packages, each of which accomplish a particular task, also go within the /opt/ directory, giving that large package a standardized way to organize itself. In this way, our sample package may have different tools that each go in their own sub-directories, such as /opt/sample/tool1/ and /opt/sample/tool2/, each of which can have their own bin/, man/, and other similar directories.

The /proc/ Directory

The /proc/ directory contains special files that either extract information from or send information to the kernel.

Due to the great variety of data available within /proc/ and the many ways this directory can be used to communicate with the kernel, an entire chapter has been devoted to the subject.

The /sbin/ Directory

The /sbin/ directory is for executables used only by the root user. The executables in /sbin/ are only used to boot and mount /usr/ and perform system recovery operations. The FHS says:

"/sbin typically contains files essential for booting the system in addition to the binaries in /bin. Anything executed after /usr is known to be mounted (when there are no problems) should be placed in /usr/sbin. Local-only system administration binaries should be placed into /usr/local/sbin."

At a minimum, the following programs should be in /sbin/:

	arp, clock,

getty, halt,

init, fdisk,

fsck.*, grub,

ifconfig, lilo,

mkfs.*, mkswap,

reboot, route,

shutdown, swapoff,

swapon, update

The /usr/ Directory
The /usr/ directory is for files that can be shared across a whole site. The /usr/ directory usually has its own partition, and it should be mountable read-only. At minimum, the following directories should be subdirectories of /usr/:

	/usr

 |- bin/

 |- dict/

 |- doc/

 |- etc/

 |- games/

 |- include/

 |- kerberos/

 |- lib/

 |- libexec/

 |- local/

 |- sbin/

 |- share/

 |- src/

 |- tmp -> ../var/tmp/

 |- X11R6/

The bin/ directory contains executables, dict/ contains non-FHS compliant documentation pages, etc/ contains system-wide configuration files, games is for games, include/ contains C header files, kerberos/ contains binaries and much more for Kerberos, and lib/ contains object files and libraries that are not designed to be directly utilized by users or shell scripts. The libexec/ directory contains small helper programs called by other programs, sbin/ is for system administration binaries (those that do not belong in the /sbin/ directory), share/ contains files that are not architecture-specific, src/ is for source code, and X11R6/ is for the X Window System (XFree86 on Red Hat Linux).

The /usr/local/ Directory

The FHS says:

"The /usr/local hierarchy is for use by the system administrator when installing software locally. It needs to be safe from being overwritten when the system software is updated. It may be used for programs and data that are shareable among a group of hosts, but not found in /usr."

The /usr/local/ directory is similar in structure to the /usr/ directory. It has the following subdirectories, which are similar in purpose to those in the /usr/ directory:

	/usr/local

 |- bin/

 |- doc/

 |- etc/

 |- games/

 |- include/

 |- lib/

 |- libexec/

 |- sbin/

 |- share/

 |- src/

The /var/ Directory
Since the FHS requires Linux to mount /usr/ read-only, any programs that write log files or need spool/ or lock/ directories should write them to the /var/ directory. The FHS states /var/ is for:

"...variable data files. This includes spool directories and files, administrative and logging data, and transient and temporary files."

/usr/local/ in Red Hat Linux

In Red Hat Linux, the intended use for the /usr/local/ directory is slightly different from that specified by the FHS. The FHS says that /usr/local/ should be where software that is to remain safe from system software upgrades is stored. Since system upgrades from under Red Hat Linux performed safely with the rpm command and graphical Package Management Tool application, it is not necessary to protect files by putting them in /usr/local/. Instead, the /usr/local/ directory is used for software that is local to the machine.

For instance, if the /usr/ directory is mounted as a read-only NFS share from a remote host, it is still possible to install a package or program under the /usr/local/ directory.

4. Resource Monitoring

As stated earlier, a great deal of system administration revolves around resources and their efficient use. By balancing various resources against the people and programs that use those resources, you will waste less money and make your users as happy as possible.

Before you can monitor resources, you first have to know what resources there are to monitor. All systems have the following resources available:

· CPU power

· Bandwidth

· Memory

· Storage

These resources are covered in more depth in the following chapters. However, for the time being all you need to keep in mind is that these resources have a direct impact on system performance, and therefore, on your users' productivity and happiness.

At its simplest, resource monitoring is nothing more than obtaining information concerning the utilization of one or more system resources.

However, it is rarely this simple. First, one must take into account the resources to be monitored. Then it is necessary to look at each system to be monitored, paying particular attention to each system's situation.

The systems you monitor will fall into one of two categories:

· The system is currently experiencing performance problems at least part of the time and you would like to improve its performance.

· The system is currently running well and you would like it to stay that way.

The first category means that you should monitor resources from a system performance perspective, while the second category means that you should monitor system resources from a capacity planning perspective.

Red Hat Linux comes with a variety of resource monitoring tools. While there are more than those listed here, these tools are representative in terms of functionality. The tools are:

· free
· top (and GNOME System Monitor, a more graphically oriented version of top)

· vmstat
· The Sysstat suite of resource monitoring tools

Let us look at each one in more detail.

$ free
The free command displays system memory utilization. Here is an example of its output:

	 total used free shared buffers cached

Mem: 255508 240268 15240 0 7592 86188

-/+ buffers/cache: 146488 109020

Swap: 530136 26268 503868

The Mem: row displays physical memory utilization, while the Swap: row displays the utilization of the system swap space, and the -/+ buffers/cache: row displays the amount of physical memory currently devoted to system buffers.

Since free by default only displays memory utilization information once, it is only useful for very short-term monitoring, or quickly determining if a memory-related problem is currently in progress. Although free has the ability to repetitively display memory utilization figures via its -s option, the output scrolls, making it difficult to easily see changes in memory utilization.

$ top
While free displays only memory-related information, the top command does a little bit of everything. CPU utilization, process statistics, memory utilization — top does it all. In addition, unlike the free command, top's default behavior is to run continuously; there is no need to use the watch command. Here is a sample display:

	11:13am up 1 day, 31 min, 5 users, load average: 0.00, 0.05, 0.07

89 processes: 85 sleeping, 3 running, 1 zombie, 0 stopped

CPU states: 0.5% user, 0.7% system, 0.0% nice, 98.6% idle

Mem: 255508K av, 241204K used, 14304K free, 0K shrd, 16604K buff

Swap: 530136K av, 56964K used, 473172K free 64724K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND

 8532 ed 16 0 1156 1156 912 R 0.5 0.4 0:11 top

 1520 ed 15 0 4084 3524 2752 S 0.3 1.3 0:00 gnome-terminal

 1481 ed 15 0 3716 3280 2736 R 0.1 1.2 0:01 gnome-terminal

 1560 ed 15 0 11216 10M 4256 S 0.1 4.2 0:18 emacs

 1 root 15 0 472 432 416 S 0.0 0.1 0:04 init

 2 root 15 0 0 0 0 SW 0.0 0.0 0:00 keventd

 3 root 15 0 0 0 0 SW 0.0 0.0 0:00 kapmd

 4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 ksoftirqd_CPU0

 5 root 15 0 0 0 0 SW 0.0 0.0 0:00 kswapd

 6 root 25 0 0 0 0 SW 0.0 0.0 0:00 bdflush

 7 root 15 0 0 0 0 SW 0.0 0.0 0:00 kupdated

 8 root 25 0 0 0 0 SW 0.0 0.0 0:00 mdrecoveryd

 12 root 15 0 0 0 0 SW 0.0 0.0 0:00 kjournald

 91 root 16 0 0 0 0 SW 0.0 0.0 0:00 khubd

 185 root 15 0 0 0 0 SW 0.0 0.0 0:00 kjournald

 186 root 15 0 0 0 0 SW 0.0 0.0 0:00 kjournald

 576 root 15 0 712 632 612 S 0.0 0.2 0:00 dhcpcd

The display is divided into two sections. The top section contains information related to overall system status — uptime, load average, process counts, CPU status, and utilization statistics for both memory and swap space. The lower section displays process-level statistics, the exact nature of which can be controlled while top is running.

GNOME System Monitor — A Graphical top
If you are more comfortable with graphical user interfaces, the GNOME System Monitor may be more to your liking. Like top, the GNOME System Monitor displays information related to overall system status, process counts, memory and swap utilization, and process-level statistics.

However, the GNOME System Monitor goes a step further by also including graphical representations of CPU, memory, and swap utilization, along with a tabular disk space utilization listing. Here is an example of the GNOME System Monitor's Process Listing display:

[image: image1.png]Fle Edt View Help

Process Listing| System Monitor

Search: View| All Processes ~
Process Name [user [Memory [cpu ~[ip
8 gnome-system-monitor e o2MB 13 20712
metaciy e 69MB 1 11979
= gnome-panel e 155MB 1 11993
~ mozila-bin e S35MB O 12162
netstat e Obyes 0 12246
~ emacs e 167MB O 12090
openss| e 15MB 0 10048
aspel e 52MB 0 12436
emacs e 175MB O 12088
~ & gnome-terminal e 100MB O 12020
& bash e 16MB 0 12128
& bash e 16MB 0 12094
- p” 1emp n 1ame 7]

More Info >> End Process

Figure 1. The GNOME System Monitor Process Listing Display
Additional information can be displayed for a specific process by first clicking on the desired process and then clicking on the More Info button.

To view the CPU, memory, and disk usage statistics, click on the System Monitor tab.

$ vmstat
For a more concise view of system performance, try vmstat. Using this resource monitor, it is possible to get an overview of process, memory, swap, I/O, system, and CPU activity in one line of numbers:

	 procs memory swap io system cpu

 r b w swpd free buff cache si so bi bo in cs us sy id

 1 0 0 0 524684 155252 338068 0 0 1 6 111 114 10 3 87

The process-related fields are:

· r — The number of runnable processes waiting for access to the CPU

· b — The number of processes in an uninterruptible sleep state

· w — The number of processes swapped out, but runnable

The memory-related fields are:

· swpd — The amount of virtual memory used

· free — The amount of free memory

· buff — The amount of memory used for buffers

· cache — The amount of memory used as page cache

The swap-related fields are:

· si — The amount of memory swapped in from disk

· so — The amount of memory swapped out to disk

The I/O-related fields are:

· bi — Blocks sent to a block device

· bo— Blocks received from a block device

The system-related fields are:

· in — The number of interrupts per second

· cs — The number of context switches per second

The CPU-related fields are:

· us — The percentage of the time the CPU ran user-level code

· sy — The percentage of the time the CPU ran system-level code

· id — The percentage of the time the CPU was idle

When vmstat is run without any options, only one line is displayed. This line contains averages, calculated from the time the system was last booted.

However, most system administrators do not rely on the data in this line, as the time over which it was collected varies. Instead, most administrators take advantage of vmstat's ability to repetitively display resource utilization data at set intervals. For example, the command vmstat 1 displays one new line of utilization data every second, while the command vmstat 1 10 displays one new line per second, but only for the next ten seconds.

In the hands of an experienced administrator, vmstat can be used to quickly determine resource utilization and performance issues. But to gain more insight into those issues, a different kind of tool is required — a tool capable of more in-depth data collection and analysis.

iostat command

The iostat command at its most basic provides an overview of CPU and disk I/O statistics:

	Linux 2.4.18-18.8.0 (pigdog.example.com) 12/11/2002

avg-cpu: %user %nice %sys %idle

 6.11 2.56 2.15 89.18

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

dev3-0 1.68 15.69 22.42 31175836 44543290

Below the first line (which displays the system's kernel version and hostname, along with the current date), iostat displays an overview of the system's average CPU utilization since the last reboot. The CPU utilization report includes the following percentages:

· Percentage of time spent in user mode (running applications, etc.)

· Percentage of time spent in user mode (for processes that have altered their scheduling priority using nice(2))

· Percentage of time spent in kernel mode

· Percentage of time spent idle

Below the CPU utilization report is the device utilization report. This report contains one line for each active disk device on the system and includes the following information:

· The device specification, displayed as dev<major-number>-sequence-number, where <major-number> is the device's major number[1], and <sequence-number> is a sequence number starting at zero.

· The number of transfers (or I/O operations) per second.

· The number of 512-byte blocks read per second.

· The number of 512-byte blocks written per second.

· The total number of 512-byte blocks read.

· The total number of 512-byte block written.

This is just a sample of the information that can be obtained using iostat. For more information, see the iostat(1) man page.

 mpstat command

The mpstat command at first appears no different from the CPU utilization report produced by iostat:

	Linux 2.4.18-14smp (pigdog.example.com) 12/11/2002

07:09:26 PM CPU %user %nice %system %idle intr/s

07:09:26 PM all 6.40 5.84 3.29 84.47 542.47

With the exception of an additional column showing the interrupts per second being handled by the CPU, there is no real difference. However, the situation changes if mpstat's -P ALL option is used:

	Linux 2.4.18-14smp (pigdog.example.com) 12/11/2002

07:13:03 PM CPU %user %nice %system %idle intr/s

07:13:03 PM all 6.40 5.84 3.29 84.47 542.47

07:13:03 PM 0 6.36 5.80 3.29 84.54 542.47

07:13:03 PM 1 6.43 5.87 3.29 84.40 542.47

On multiprocessor systems, mpstat allows the utilization for each CPU to be viewed individually, making it possible to determine how effectively each CPU is being used.

Physical and Virtual Memory
Due to the inherent complexity of being a demand-paged virtual memory operating system, monitoring memory-related resources under Red Hat Linux can be confusing. Therefore, it is best to start with the more straightforward tools, and work from there.

Using free, it is possible to get a concise (if somewhat simplistic) overview of memory and swap utilization. Here is an example:

	 total used free shared buffers cached

Mem: 1288720 361448 927272 0 27844 187632

-/+ buffers/cache: 145972 1142748

Swap: 522104 0 522104

We can see that this system has 1.2GB of RAM, of which only about 350MB is actually in use. As expected for a system with this much free RAM, none of the 500MB swap partition is in use.

Contrast that example with this one:

	 total used free shared buffers cached

Mem: 255088 246604 8484 0 6492 111320

-/+ buffers/cache: 128792 126296

Swap: 530136 111308 418828

This system has about 256MB of RAM, the majority of which is in use, leaving only about 8MB free. Over 100MB of the 512MB swap partition is in use. Although this system is certainly more limited in terms of memory than the first system, to see if this memory limitation is causing performance problems we must dig a bit deeper.

5. Managing User Accounts

Managing user accounts and groups is an essential part of system administration within an organization. But to do this effectively, a good system administrator must first understand what user accounts and groups are and how they work.

The primary reason for user accounts is to verify the identity of each individual using a computer system. A secondary (but still important) reason for user accounts is to permit the per-individual tailoring of resources and access privileges.

Resources can include files, directories, and devices. Controlling access to these resources is a large part of a system administrator's daily routine; often the access to a resource is controlled by groups. Groups are logical constructs that can be used to cluster user accounts together for a common purpose. For example, if an organization has multiple system administrators, they can all be placed in one system administrator group. The group can then be given permission to access key system resources. In this way, groups can be a powerful tool for managing resources and access.

The following sections discuss user accounts and groups in more detail.

User Accounts, Groups, and Permissions

Under Red Hat Linux, a user can log into the system and use any applications or files they are permitted to access after a normal user account is created. Red Hat Linux determines whether or not a user or group can access these resources based on the permissions assigned to them.

There are three different permissions for files, directories, and applications. These permissions are used to control the kinds of access allowed. Different one-character symbols are used to describe each permission in a directory listing. The following symbols are used:

· r — Indicates that a given category of user can read a file.

· w — Indicates that a given category of user can write to a file.

· x — Indicates that a given category of user can execute the contents of a file.

A fourth symbol (-) indicates that no access is permitted.

Each of the three permissions are assigned to three different categories of users. The categories are:

· owner — The owner of the file or application.

· group — The group that owns the file or application.

· everyone — All users with access to the system.

As stated earlier, it is possible to view the permissions for a file by invoking a long format listing with the command ls -l. For example, if the user juan creates an executable file named foo, the output of the command ls -l foo would look like this:

	-rwxrwxr-x 1 juan juan 0 Sep 26 12:25 foo

The permissions for this file are listed at the start of the line, beginning with rwx. This first set of symbols define owner access — in this example, the owner juan has full access, and may read, write, and execute the file. The next set of rwx symbols define group access (again, with full access), while the last set of symbols define the types of access permitted for all other users. Here, all other users may read and execute the file, but may not modify it in any way.

One important point to keep in mind regarding permissions and user accounts is that every application run on Red Hat Linux runs in the context of a specific user. Typically, this means that if user juan launches an application, the application runs using user juan's context. However, in some cases the application may need a more privileged level of access in order to accomplish a task. Such applications include those that edit system settings or log in users. For this reason, special permissions have been created.

There are three such special permissions within Red Hat Linux. They are:

· setuid — used only for applications, this permission indicates that the application is to run as the owner of the file and not as the user executing the application. It is indicated by the character s in place of the x in the owner category. If the owner of the file does not have execute permissions, the S is capitalized to reflect this fact.

· setgid — used primarily for applications, this permission indicates that the application is to run as the group owning the file and not as the group of the user executing the application.

If applied to a directory, all files created within the directory are owned by the group owning the directory, and not by the group of the user creating the file. The setgid permission is indicated by the character s in place of the x in the group category. If the group owner of the file or directory does not have execute permissions, the S is capitalized to reflect this fact.

· sticky bit — used primarily on directories, this bit dictates that a file created in the directory can be removed only by the user that created the file. It is indicated by the character t in place of the x in the everyone category. If the everyone category does not have execute permissions, the T is capitalized to reflect this fact.

Under Red Hat Linux, the sticky bit is set by default on the /tmp/ directory for exactly this reason.

Files Controlling User Accounts and Groups

On Red Hat Linux, information about user accounts and groups are stored in several text files within the /etc/ directory. When a system administrator creates new user accounts, these files must either be edited by hand or applications must be used to make the necessary changes.

The following section documents the files in the /etc/ directory that store user and group information under Red Hat Linux.

/etc/passwd
The /etc/passwd file is world-readable and contains a list of users, each on a separate line. On each line is a colon delimited list containing the following information:

· Username — The name the user types when logging into the system.

· Password — Contains the encrypted password (or an x if shadow passwords are being used — more on this later).

· User ID (UID) — The numerical equivalent of the username which is referenced by the system and applications when determining access privileges.

· Group ID (GID) — The numerical equivalent of the primary group name which is referenced by the system and applications when determining access privileges.

· GECOS — Named for historical reasons, the GECOS[1] field is optional and is used to store extra information (such as the user's full name). Multiple entries can be stored here in a comma delimited list. Utilities such as finger access this field to provide additional user information.

· Home directory — The absolute path to the user's home directory, such as /home/juan/.

· Shell — The program automatically launched whenever a user logs in. This is usually a command interpreter (often called a shell). Under Red Hat Linux, the default value is /bin/bash. If this field is left blank, /bin/sh is used. If it is set to a non-existent file, then the user will be unable to log into the system.

Here is an example of a /etc/passwd entry:

	root:x:0:0:root:/root:/bin/bash

This line shows that the root user has a shadow password, as well as a UID and GID of 0. The root user has /root/ as a home directory, and uses /bin/bash for a shell.

For more information about /etc/passwd, see the passwd(5) man page.

/etc/shadow
Because the /etc/passwd file must be world-readable (the main reason being that this file is used to perform the translation from UID to username), there is a risk involved in storing everyone's password in /etc/passwd. True, the passwords are encrypted. However, it is possible to perform attacks against passwords if the encrypted password is available.

If a copy of /etc/passwd can be obtained by an attacker, an attack that can be carried out in secret becomes possible. Instead of risking detection by having to attempt an actual login with every potential password generated by password-cracker, an attacker can use a password cracker in the following manner:

· A password-cracker generates potential passwords

· Each potential password is then encrypted using the same algorithm as the system

· The encrypted potential password is then compared against the encrypted passwords in /etc/passwd
The most dangerous aspect of this attack is that it can take place on a system far-removed from your organization. Because of this, the attacker can use the highest-performance hardware available, making it possible to go through massive numbers of passwords very quickly.

Therefore, the /etc/shadow file is readable only by the root user and contains password (and optional password aging information) for each user. As in the /etc/passwd file, each user's information is on a separate line. Each of these lines is a colon delimited list including the following information:

· Username — The name the user types when logging into the system. This allows the login application to retrieve the user's password (and related information).

· Encrypted password — The 13 to 24 character password. The password is encrypted using either the crypt(3) library function or the md5 hash algorithm. In this field, values other than a validly-formatted encrypted or hashed password are used to control user logins and to show the password status. For example, if the value is ! or *, the account is locked and the user is not allowed to log in. If the value is !! a password has never been set before (and the user, not having set a password, will not be able to log in).

· Date password last changed — The number of days since January 1, 1970 (also called the epoch) that the password was last changed. This information is used in conjunction with the password aging fields that follow.

· Number of days before password can be changed — The minimum number of days that must pass before the password can be changed.

· Number of days before a password change is required — The number of days that must pass before the password must be changed.

· Number of days warning before password change — The number of days before password expiration during which the user is warned of the impending expiration.

· Number of days before the account is disabled — The number of days after a password expires before the account will be disabled.

· Date since the account has been disabled — The date (stored as the number of days since the epoch) since the user account has been disabled.

· A reserved field — A field that is ignored in Red Hat Linux.

Here is an example line from /etc/shadow:

	juan:1.QKDPc5E$SWlkjRWexrXYgc98F.:11956:0:90:5:30:12197:

This line shows the following information for user juan:

· The password was last changed September 25, 2002

· There is no minimum amount of time required before the password can be changed

· The password must be changed every 90 days

· The user will get a warning five days before the password must be changed

· The account will be disabled 30 days after the password expires if no login attempt is made

· The account will expire on May 24, 2003

For more information on the /etc/shadow file, see the shadow(5) man page.

/etc/group
The /etc/group file is world-readable and contains a list of groups, each on a separate line. Each line is a four field, colon delimited list including the following information:

· Group name — The name of the group. Used by various utility programs as a human-readable identifier for the group.

· Group password — If set, this allows users that are not part of the group to join the group by using the newgrp command and typing the password stored here. If a lower case x is in this field, then shadow group passwords are being used.

· Group ID (GID) — The numerical equivalent of the group name. It is used by the operating system and applications when determining access privileges.

· Member list — A comma delimited list of the users belonging to the group.

Here is an example line from /etc/group:

	general:x:502:juan,shelley,bob

This line shows that the general group is using shadow passwords, has a GID of 502, and that juan, shelley, and bob are members.

For more information on /etc/group, see the group(5) man page.

User Account and Group Applications

There are two basic types of applications that can be used when managing user accounts and groups on Red Hat Linux systems:

· The graphical User Manager application

· A suite of command line tools

For detailed instructions on using User Manager, see the chapter titled User and Group Configuration in the Red Hat Linux Customization Guide.

While both the User Manager application and the command line utilities perform essentially the same task, the command line tools have the advantage of being script-able and are therefore more easily automated.

The following table describes some of the more common command line tools used to create and manage user accounts and groups:

	Application
	Function

	/usr/sbin/useradd
	Adds user accounts. This tool is also used to specify primary and secondary group membership.

	/usr/sbin/userdel
	Deletes user accounts.

	/usr/sbin/usermod
	Edits account attributes including some functions related to password aging. For more fine-grained control, use the passwd command. usermod is also used to specify primary and secondary group membership.

	Passwd
	Sets passwords. Although primarily used to change a user's password, it also controls all aspects of password aging.

Table 1. User Management Command Line Tools
The following table describes some of the more common command line tools used to create and manage groups:

	Application
	Function

	/usr/sbin/groupadd
	Adds groups, but does not assign users to those groups. The useradd and usermod programs should then be used to assign users to a given group.

	/usr/sbin/groupdel
	Deletes groups.

	/usr/sbin/groupmod
	Modifies group names or GIDs, but does not change group membership. The useradd and usermod programs should be used to assign users to a given group.

Table 2. Group Management Command Line Tools
The tools listed thus far provide system administrators great flexibility in controlling all aspects of user accounts and group membership. To learn more about how they work, refer to the man page for each. These applications do not, however, determine what resources these users and groups have control over. For this, the system administrator must use file permission applications.
File Permission Applications

Permissions for files, directories, and applications are an integral part of managing resources within an organization. The following table describes some of the more common command line tools used for this purpose.

	Application
	Function

	Chgrp
	Changes which group owns a given file.

	Chmod
	Changes access permissions for a given file. It is also capable of assigning special permissions.

	chown
	Changes a file's ownership (and can also change group).

Table 3. Permission Management Command Line Tools
6. Package Management with RPM

The RPM Package Manager (RPM) is an open packaging system, available for anyone to use, which runs on Red Hat Linux as well as other Linux and UNIX systems. Red Hat, Inc. encourages other vendors to use RPM for their own products. RPM is distributable under the terms of the GPL.

For the end user, RPM makes system updates easy. Installing, uninstalling, and upgrading RPM packages can be accomplished with short commands. RPM maintains a database of installed packages and their files, so you can invoke powerful queries and verifications on your system. During upgrades, RPM handles configuration files carefully, so that you never lose your customizations — something that you will not accomplish with regular .tar.gz files.

Installing

RPM packages typically have file names like foo-1.0-1.i386.rpm. The file name includes the package name (foo), version (1.0), release (1), and architecture (i386). Installing a package is as simple as logging in as root and typing the following command at a shell prompt:

	rpm -Uvh foo-1.0-1.i386.rpm

If installation is successful, you will see the following:

	Preparing... ### [100%]

 1:foo ### [100%]

As you can see, RPM prints out the name of the package and then prints a succession of hash marks as the package is installed as a progress meter.

Starting with version 4.1 of RPM, the signature of a package is checked when installing or upgrading a package. If verifying the signature fails, you will see an error message such as:

	error: V3 DSA signature: BAD, key ID 0352860f

If is it a new, header-only, signature, you will see an error message such as:

	error: Header V3 DSA signature: BAD, key ID 0352860f

If you do not have the appropriate key installed to verify the signature, the message will contain NOKEY such as:

	warning: V3 DSA signature: NOKEY, key ID 0352860f

Installing packages is designed to be simple, but you may sometimes see errors.

Package Already Installed

If the package of the same version is already installed, you will see:

	Preparing... ### [100%]

package foo-1.0-1 is already installed

If you want to install the package anyway and the same version you are trying to install is already installed, you can use the --replacepkgs option, which tells RPM to ignore the error:

	rpm -ivh --replacepkgs foo-1.0-1.i386.rpm

This option is helpful if files installed from the RPM were deleted or if you want the original configuration files from the RPM to be installed.

Conflicting Files

If you attempt to install a package that contains a file which has already been installed by another package or an earlier version of the same package, you will see:

	Preparing... ### [100%]

file /usr/bin/foo from install of foo-1.0-1 conflicts with file from package bar-2.0.20

To make RPM ignore this error, use the --replacefiles option:

	rpm -ivh --replacefiles foo-1.0-1.i386.rpm

Unresolved Dependency
RPM packages can "depend" on other packages, which means that they require other packages to be installed in order to run properly. If you try to install a package which has an unresolved dependency, you will see:

	Preparing... ### [100%]

error: Failed dependencies:

 bar.so.2 is needed by foo-1.0-1

 Suggested resolutions:

 bar-2.0.20-3.i386.rpm

If you are installing an official Red Hat, it will usually suggest the package(s) need to resolve the dependency. Find this package on the Red Hat Linux CD-ROMs or from the Red Hat FTP site (or mirror), and add it to the command:

	rpm -ivh foo-1.0-1.i386.rpm bar-2.0.20-3.i386.rpm

If installation of both packages is successful, you will see:

	Preparing... ### [100%]

 1:foo ### [50%]

 2:bar ### [100%]

If it does not suggest a package to resolve the dependency, you can try the --redhatprovides option to determine which package contains the required file. You need the rpmdb-redhat package installed to use this options.

	rpm -q --redhatprovides bar.so.2

If the package that contains bar.so.2 is in the installed database from the rpmdb-redhat package, the name of the package will be displayed:

	bar-2.0.20-3.i386.rpm

If you want to force the installation anyway (a bad idea since the package probably will not run correctly), use the --nodeps option.

 Uninstalling

Uninstalling a package is just as simple as installing one. Type the following command at a shell prompt:

	rpm -e foo

You can encounter a dependency error when uninstalling a package if another installed package depends on the one you are trying to remove. For example:

	Preparing... ### [100%]

error: removing these packages would break dependencies:

 foo is needed by bar-2.0.20-3.i386.rpm

To cause RPM to ignore this error and uninstall the package anyway (which is also a bad idea since the package that depends on it will probably fail to work properly), use the --nodeps option.

Upgrading

Upgrading a package is similar to installing one. Type the following command at a shell prompt:

	rpm -Uvh foo-2.0-1.i386.rpm

What you do not see above is that RPM automatically uninstalled any old versions of the foo package. In fact, you may want to always use -U to install packages, since it will work even when there are no previous versions of the package installed.

Since RPM performs intelligent upgrading of packages with configuration files, you may see a message like the following:

	saving /etc/foo.conf as /etc/foo.conf.rpmsave

This message means that your changes to the configuration file may not be "forward compatible" with the new configuration file in the package, so RPM saved your original file, and installed a new one. You should investigate the differences between the two configuration files and resolve them as soon as possible, to ensure that your system continues to function properly.

Upgrading is really a combination of uninstalling and installing, so during an RPM upgrade you can encounter uninstalling and installing errors, plus one more. If RPM thinks you are trying to upgrade to a package with an older version number, you will see:

	package foo-2.0-1 (which is newer than foo-1.0-1) is already installed

To cause RPM to "upgrade" anyway, use the --oldpackage option:

	rpm -Uvh --oldpackage foo-1.0-1.i386.rpm

Querying

Use the rpm -q command to query the database of installed packages. The rpm -q foo command will print the package name, version, and release number of the installed package foo:

	foo-2.0-1

Instead of specifying the package name, you can use the following options with -q to specify the package(s) you want to query. These are called Package Specification Options.

· -a queries all currently installed packages.

· -f <file> will query the package which owns <file>. When specifying a file, you must specify the full path of the file (for example, /usr/bin/ls).

· -p <packagefile> queries the package <packagefile>.

· -i displays package information including name, description, release, size, build date, install date, vendor, and other miscellaneous information.

· -l displays the list of files that the package contains.

· -s displays the state of all the files in the package.

· -d displays a list of files marked as documentation (man pages, info pages, READMEs, etc.).

· -c displays a list of files marked as configuration files. These are the files you change after installation to adapt the package to your system (for example, sendmail.cf, passwd, inittab, etc.).

7. Printer and Printing
The following describes the various features specific to Red Hat Linux that relate to printers and printing.

The Printer Configuration Tool allows users to configure a printer in Red Hat Linux. This tool helps maintain the printer configuration file, print spool directories, and print filters.

Starting with version 9, Red Hat Linux defaults to the CUPS printing system. The previous default printing system, LPRng is still provided. If the system was upgraded from a previous Red Hat Linux version that used LPRng, the upgrade process did not replace LPRng with CUPS; the system will continue to use LPRng.

If a system was upgraded from a previous Red Hat Linux version that used CUPS, the upgrade process preserved the configured queues, and the system will continue to use CUPS.

The Printer Configuration Tool configures both the CUPS and LPRng printing system, depending on which one the system is configured to use. When you apply changes, it configures the active printing system.

To use the Printer Configuration Tool you must have root privileges. To start the application, select Main Menu Button (on the Panel) => System Settings => Printing, or type the command redhat-config-printer. This command automatically determines whether to run the graphical or text-based version depending on whether the command is executed in the graphical X Window System environment or from a text-based console.

You can also force the Printer Configuration Tool to run as a text-based application by using the command redhat-config-printer-tui from a shell prompt.

If you are using LPRng and want to add a printer without using the Printer Configuration Tool, edit the /etc/printcap.local file. The entries in /etc/printcap.local are not displayed in the Printer Configuration Tool but are read by the printer daemon. If you upgraded your system from a previous version of Red Hat Linux, your existing configuration file was converted to the new format used by this application. Each time a new configuration file is generated, the old file is saved as /etc/printcap.old.

If you are using CUPS, the Printer Configuration Tool does not display any queues or shares not configured using the Printer Configuration Tool; however, it will not remove them from the configuration files.

[image: image2.png]Action Test Help

G = B A %

New Edit Delete Default Apply

Queue name ~ |Default [Description

Figure 2. Printer Configuration Tool
The following types of print queues can be configured:

· Locally-connected — a printer attached directly to the computer through a parallel or USB port.

· Networked CUPS (IPP) — a printer that can be accessed over a TCP/IP network via the Internet Printing Protocol, also known as IPP (for example, a printer attached to another Red Hat Linux system running CUPS on the network).

· Networked UNIX (LPD) — a printer attached to a different UNIX system that can be accessed over a TCP/IP network (for example, a printer attached to another Red Hat Linux system running LPD on the network).

· Networked Windows (SMB) — a printer attached to a different system which is sharing a printer over a SMB network (for example, a printer attached to a Microsoft Windows™ machine).

· Networked Novell (NCP) — a printer attached to a different system which uses Novell's NetWare network technology.

· Networked JetDirect — a printer connected directly to the network through HP JetDirect instead of to a computer.

Clicking the Apply button saves any changes that you have made and restarts the printer daemon. The changes are not written to the configuration file until the printer daemon is restarted. Alternatively, you can choose Action => Apply.

