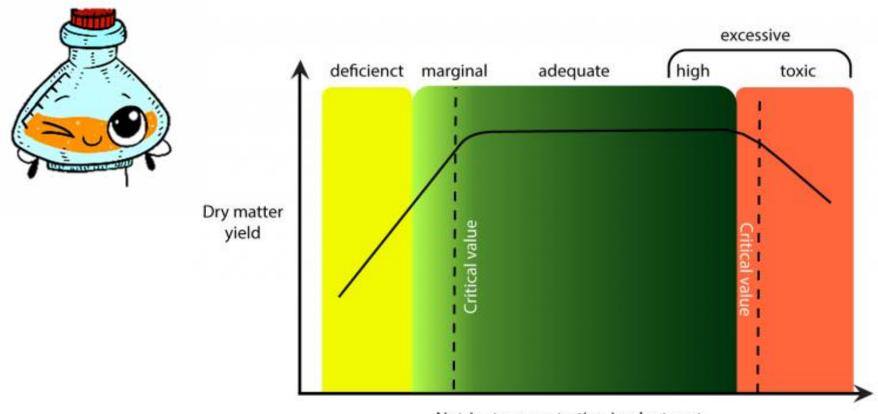


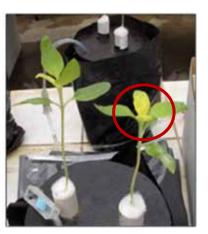
Hydroponic Nutrients

Online Training of Hydroponic Vegetable Cultivation

Lembang, 28 Mei 2021


Lecturer Team ICAT Lembang

Soil consists of a wide variety of substances. It not only supplies minerals but also harbours nitrogen fixing bacteria, other microbes, holds water, supplies air to the roots.


Nutrient concentration in plant part

The key to successful management of a fertilizer program is to ensure adequate concentrations of all nutrients throughout the life cycle of the crop.

Hydroponic used for nutrient experiment?

- In this experiment roots of the plants were immersed in nutrient solutions.
- In this case element was added/removed or given in various concentration and then a nutrient solution suitable for the plant growth was determined.
- > The nutrient solution must be adequately aerated to obtain the optimum growth.

Practical class in crop science Laboratory

Criteria for essentiality of nutrients:

- In the absence of element plant will not complete its life cycle or set the seeds.
- ❖ The requirement of the element must be specific and cannot be replaced by other element.
- There is correlation between mineral and plant metabolism.

Hydroponic Nutrient

Plant Nutient

Macro Nutrient

Nitrogen (N)
Phosphorus (P)
Potassium (K)
Magnesium (Mg)
Sulfur (S)
Calcium (Ca)

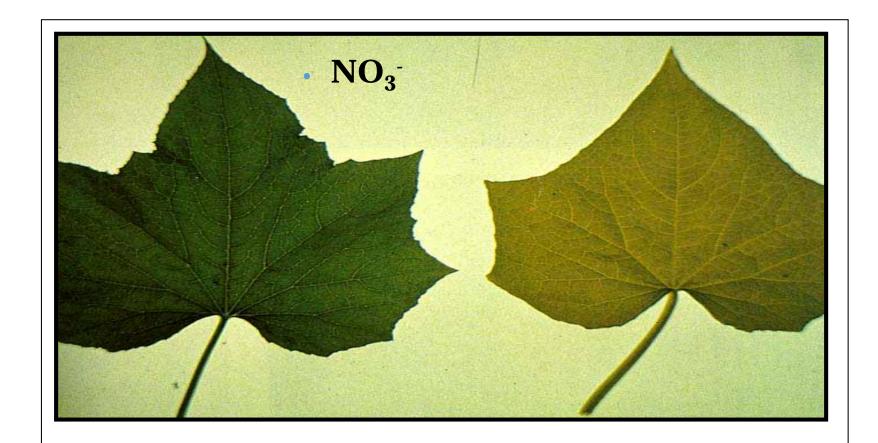
C, H, O

Micro Nutrient

Iron (Fe)
Manganese (Mn)
Boron (Bo)
Zinc (Zn)
Chlorin (Cl)
Molybdenum (Mo)
Copper (Cu)

Based on functions of essential elements they are classified under four categories:

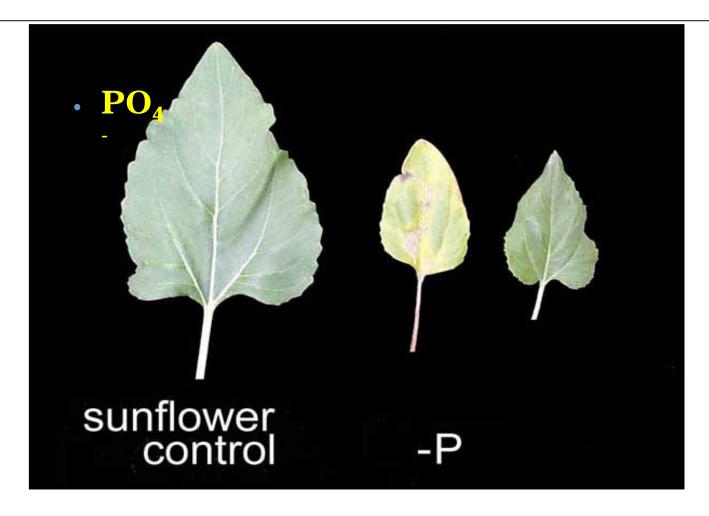
- Essential elements as components of Biomolecules. E.g. Carbon, hydrogen, oxygen and nitrogen.
- Essential elements that are components of energy related chemical compounds in plants. E.g. Magnesium in chlorophyll and phosphorus in ATP.



- Essential elements that activate or inhibit enzyme. E.g. Mg ion and Zn ion.
- Essential elements that can alter the osmotic potential of a cell. E.g. Potassium .It plays an important role in opening and closing of stomata

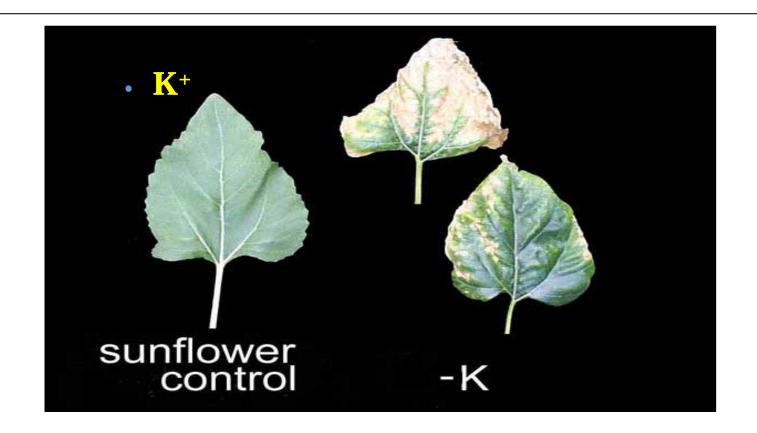
Role of micro and macronutrients:

Nitrogen:


- □ It is absorbed as NO₃⁻,NO₂⁻, or NH₄⁺
- Require by plants in greatest amount and for all parts, meristematic & metabolically active cells.
- Important constituent of proteins, nucleic acids, vitamins and Hormones.

- Deficiency: Poor growth and leaf yellowing
 Nitrogen (nitrate ions: Needed to make
- Nitrogen (nitrate ions: Needed to make proteins and chlorophyll

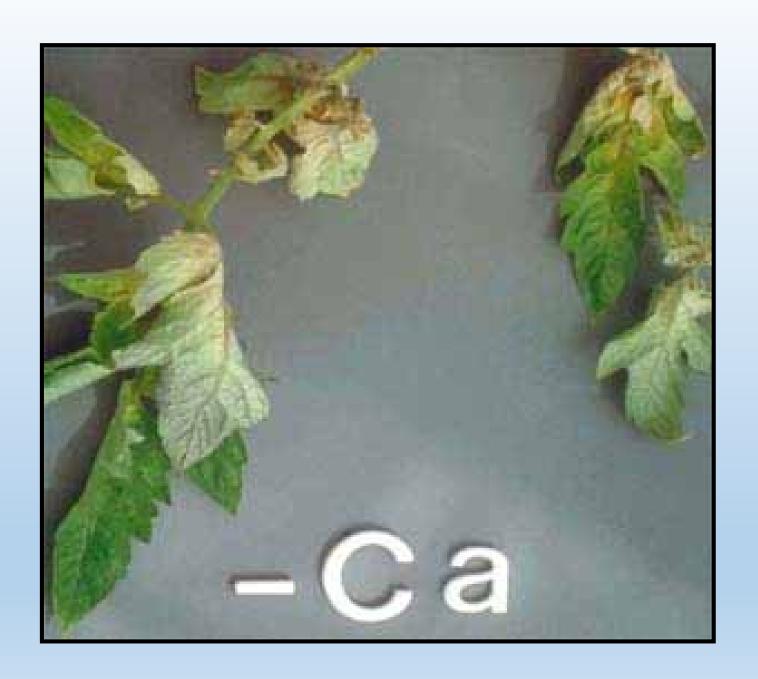
***Phosphorous:**


- It is absorbed in the form of phosphate ions in the form H₂PO₄⁻ , or HPO₄²⁻
- Constituent of certain proteins, cell membrane, all nucleic acid, nucleotides.
- Required for all phosphorylation reactions.

- Phosphorous: Required for photosynthesis and respiration
 - Deficiency: Poor root growth and purple younger leaves

***POTASSIUM:**

- It is absorbed as K⁺ ions.
- Require for meristematic tissues, buds, leaves, and root tips.
- Helps in Protein synthesis, Opening and closing of stomata.
- Helps in activation of enzymes.
- It maintains the turgidity of cells.



Potassium: Helps enzymes in photosynthesis and respiration

Deficiency: Yellow leaves with dead spots

***Calcium:**

- Absorbed in the form of Ca^{2+.}
- Required by meristematic and differentiating tissues.
- During cell division it is used in synthesis of cell wall.
- Required for mitotic spindle formation.
- Activation of enzymes.

*Magnesium:


- Absorbed in the form of Mg²⁺.
- Activates enzymes of respiration and photosynthesis.
- Involved in synthesis of DNA and RNA.
- Helps to maintain ribosome structure.

- Magnesium is required as part of the chlorophyll molecule
 - Deficiency: Yellowing of leaves and poor growth

***Sulphur:**

- Absorbed in the form of SO₄²⁻.
- Present in cystein and methionine amino acids.
- Present in vitamins (thiamine, biotin, Coenzyme A) and ferredoxin.

«Iron:

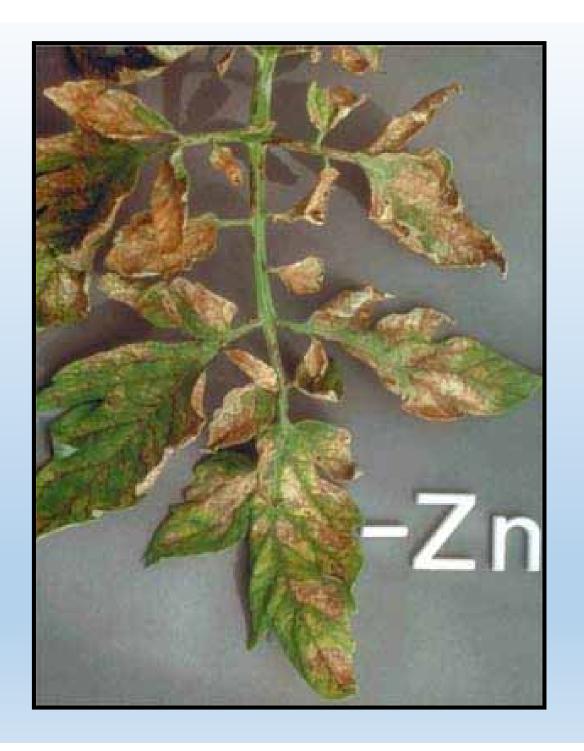
- Absorbed in the form of Fe³⁺ (Ferric ion)
- Important constituent of proteins.
- Involved in the transfer of electrons like ferredoxin and cytochromes.
- Activates catalase enzyme.
- Essential for formation of chlorophyll.

I ron is required by the enzymes that make chlorophyll

Deficiency: Leaf yellowing

*Manganese:

- Absorbed in the form of manganous ion (Mn²⁺).
- Helps in activation of enzyme during photosynthesis, respiration and nitrogen metabolism.
- Helps in splitting of water to liberate oxygen during photosynthesis.



&Zinc:

- Absorbed as Zn²⁺.
- Activates carboxylases enzyme.
- Requires for synthesis of Auxins.

***Copper:**

- Absorbed as cupric ions (Cu²⁺).
- Essential for metabolism in plants.
- Activation of enzymes.

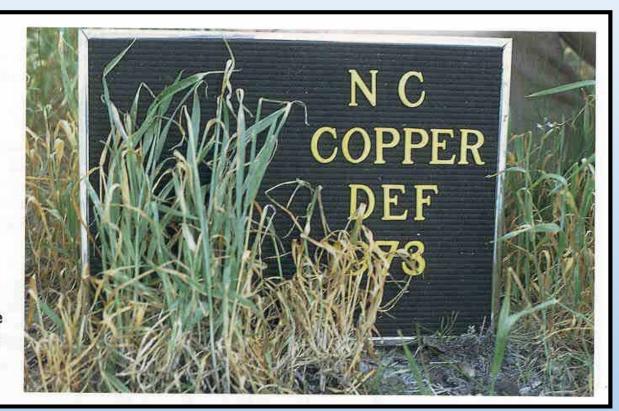
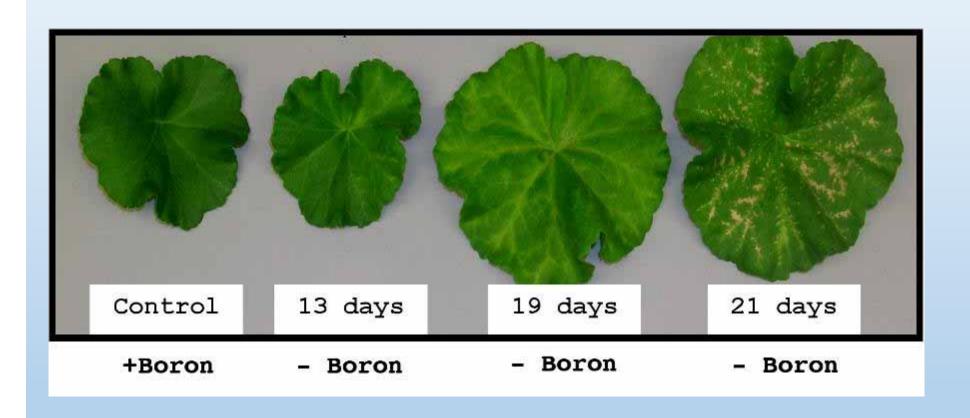
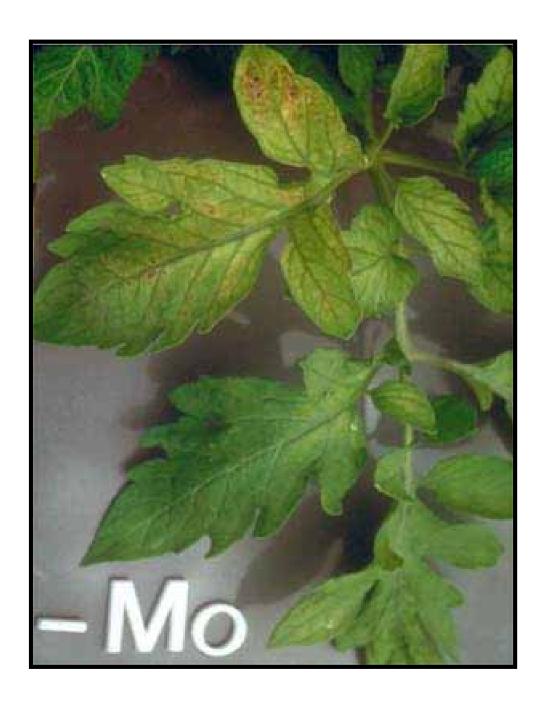
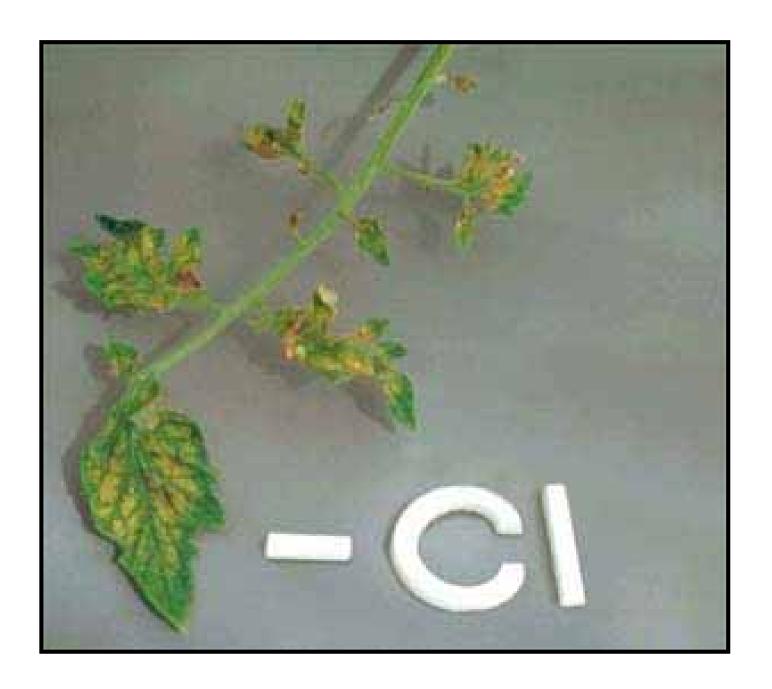



Figure 5. Plants with moderate (left) and severe (right) copper deficiency.

***Boron:**

- $_{\circ}$ Absorbed as BO $_3^{3-}$ or B $_4$ O $_7^{2-}$.
- Required for uptake and utilisation of Ca²⁺, membrane functioning, pollen germination, cell elongation, cell differentiation and carbohydrate translocation.

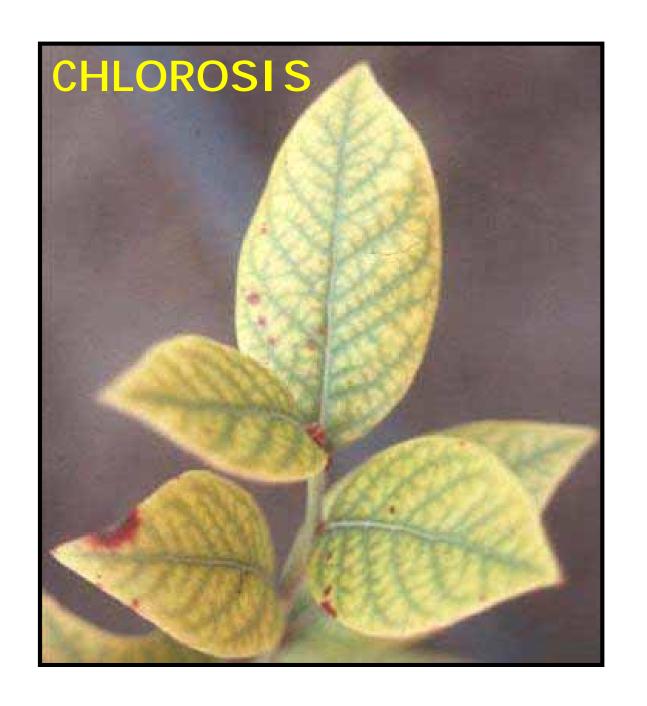



*Molybdenum:

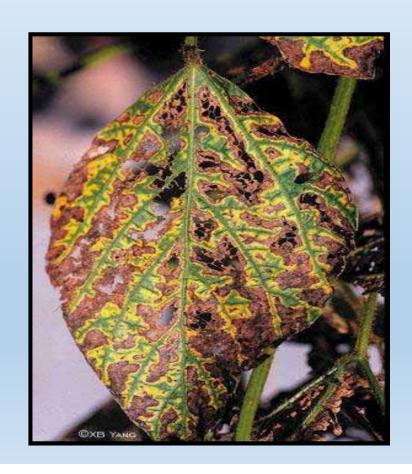
- Absorbed in the form of Molybdate ions (MoO_2^{2+}).
- Components of enzymes like nitrogenase and nitrate reductase
 (Participates in nitrogen metabolism)

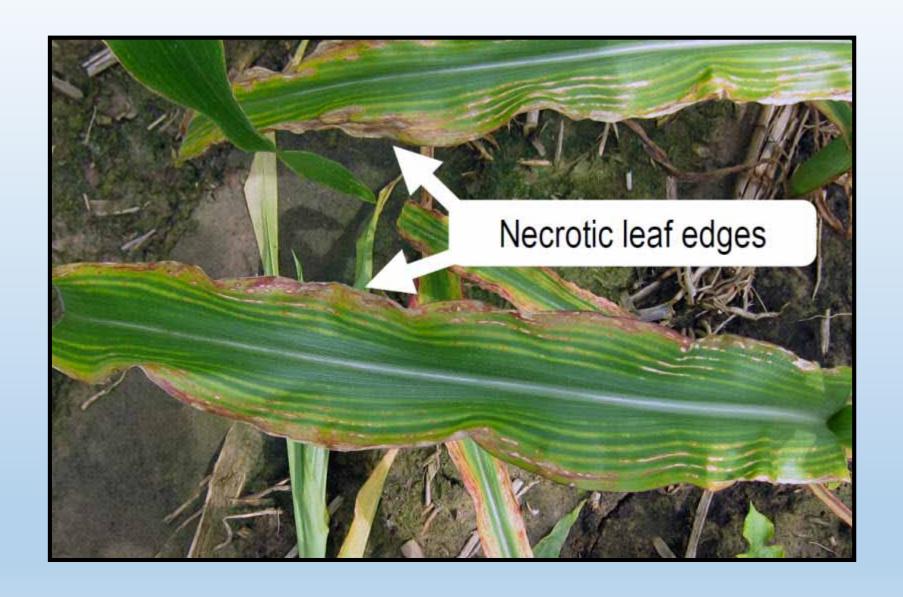
***Chlorine:**

- Absorbed in the form of Cl⁻.
- Helps in maintaining anion- cation balance.
- Essential for water splitting reaction in photosynthesis.



Deficiency symptoms of essenAtial elements:


Chlorosis:


- Loss of chlorophyll leading to yellowing of leaf.
- □ The deficiency of elements: N, K, Mg, S, Fe, Mn, Zn and Mo.

□Necrosis:

- Death of leaf tissue.
- Caused due to deficiency of Ca, Mg,
 Cu and K.

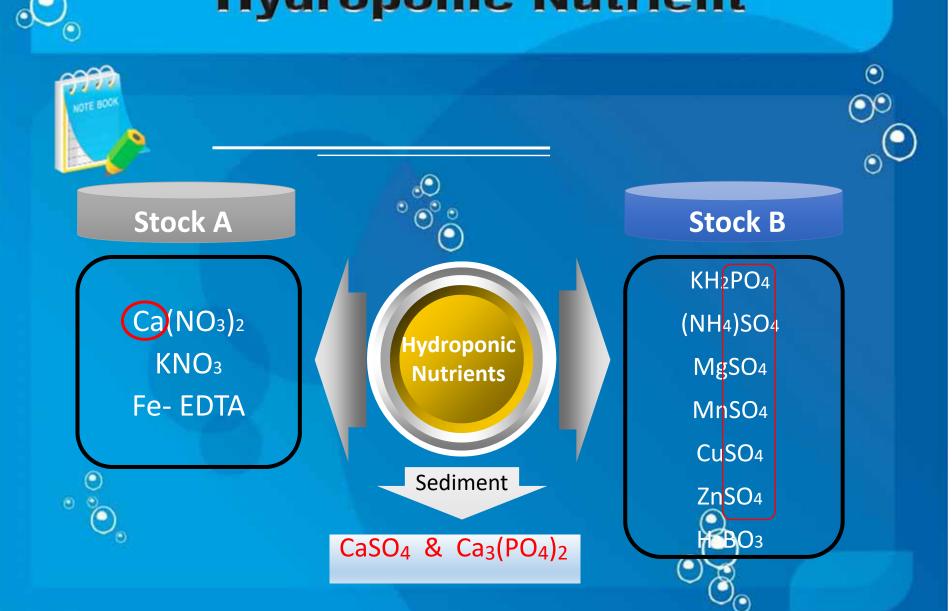
- Stunted growth and premature fall of leaves and buds:
- Deficiency of N, K, Mg, S, Fe, Mn, Zn and Mo
- Inhibition of cell division:
- Deficiency of N, K, S, Mo.
- Delay flowering:
- Deficiency of N, S, Mo.

- ➤ Water quality salinity, concentration of harmful elements dissolved in water (such as sodium, chloride and boron);
- The nutrients needed and their concentration in hydroponic nutrient solutions;
- ➤ Nutritional balance;
- The pH of the hydroponic nutrient solution and its effect on nutrient uptake by plants.

To use in the circulation system .

- Periodically check the pH and EG of the nutrient solution
- The volume of the nutrient solution is adjusted to the number of plants
- The volume of nutrient solution must be maintained from the beginning of planting until harvest
- The water discharge is between 1-2 liters / minute and the slope of the gutter is between 3-5% (NFT)

Nutrient solution is splashed into the substrate and stop before water drips out from the bottom of the pot



Making the hydroponic nutrients

2

Find out the nutrient tolerant range

0

Determine what plant needs:Plants types & variety

- The part that is utilized
- Plant age
- Antagonistic properties among the nutrients

Calculating the nutrient composition

Nutrient tolerate range

0

Plant needs

Nutrient elements	ppm	Lettuce, mustard greens	Tomatoes
NITROGEN (N, 14)	140 – 300	250	250
PHOSPOROUS (P, 31)	31 – 80	80	60
POTASSIUM (K, 39)	160 – 400	300	350
CALCIUM (Ca, 40)	100 – 200	160	170
MAGNESIUM (Mg, 24)	24 – 75	80	50
SULFUR (S, 32)	32 – 400	125	65
IRON (Fe, 56)	0,75 – 5	1,0	12
BORON (B, 11)	0,06 – 1	0,5	2,0
MANGANESE (Mn, 55)	0,11 – 2	0,5	0,1
ZINC (Zn, 65)	0,04 – 0,68	0,25	0,3
COPPER (Cu, 64)	0,02 – 0,75	0,18	0,1
MOLIBDENUM (Mo, 96)	0,001 – 0,04	0,01	0,2

Calculating the amount of compounds

Ca = 18,5 %

 $NO_3 = 14.2 \%$

NH₄ = 1,3 %

Ca → 185 ppm

> 185 g/1.000 L x 100/18,5 = **1.000** g

The amount of NO₃ and NH₄:

 $NO_3 = 14.2 \% \times 1000 = 142 \text{ g}/1.000 \text{ L}$

 $NH_4 = 1.3 \% \times 1000 = 13 g/1.000 L$

Nutrient	N	Р	К	Ca	Mg	S
g/1.000L	250	62	300	185	62	110
Sum	142+13			185		

Hydroponic Nutrient

MgSO₄.7H₂O

Mg = 9,7 %

S = 13 %

 $Mg \longrightarrow 62 ppm$

62 g/1.000 L x 100/9,7 = 639 g

The amount of S:

$$S = 13 \% \times 639 = 83 \text{ g}/1.000 \text{ L}$$

Nutrient	N	Р	К	Ca	Mg	S
g/1.000L	250	62	300	185	62	110
Sum	142+13			185	62	83

0

The amount K₂SO₄

S = 18,4 %

K = 44.8 %

S → 27 ppm

27 g/1.000 L x 100/18,4 = 147 g

The amounts of K:

$$K = 44.8 \% \times 147 = 66 \text{ g}/1.000 \text{ L}$$

Nutrient	N	Р	К	Ca	Mg	S
g/1.000L	250	62	300	185	62	110
Sum	142+13		66	185	62	83+27

NUTRISI HIDROPONIK

The amount of KNO₃

 $NO_3 \longrightarrow 80 ppm$

 $80 \text{ g}/1.000 \text{ L} \times 100/14 = 571 \text{ g}$

Maka jumlah K adalah

K = $39 \% \times 571 = 223 \text{ g}/1.000 \text{ L}$

Unsur Hara	N	Р	К	Ca	Mg	S
g/1.000L	250	62	300	185	62	110
Jumlah	142+13+80		66+223	185	62	83+27

Hydroponic Nutrient

The amount of $NH_4.H_2.PO_4$ $NH_4 = 12 \%$ $P \longrightarrow 27 \%$ $NH_4 = 15 ppm$

15 g/1.000 L x 100/12 = 125 g

The amount of P:

P =
$$27 \% \times 125 = 34 \text{ g}/1.000 \text{ L}$$

Nutrient	N	Р	К	Ca	Mg	S
g/1.000L	250	62	300	185	62	110
Sum	142+13+80+15	34	66+223	185	62	83+27

Hydroponic Nutrient

Amount KH₂PO₄

P = 22,8 %

K = 28,7 %

P → 28 ppm

28 g/1.000 L x 100/22,8 = 123 g

The Amount of K:

K = $28,7 \% \times 123 = 35 \text{ g}/1.000 \text{ L}$

Nutrient	N	Р	К	Ca	Mg	S
g/1.000L	250	62	300	185	62	110
Sum	142+13+80+15	34+28	66+223+35	185	62	83+27

Complete micronutrients pack o

Fe : 1,3 ppm

Mn : 0,68 ppm

Cu : 0,68 ppm

Bo : 0,35 ppm

Zn : 0,28 ppm

Mo : 0,03 ppm

The amounts of micronutrients is 40 g/1.000 L

Nutrient	N	Р	К	Ca	Mg	S
g/1.000L	250	62	300	185	62	110
Sum	142+13+80+15	34+28	66+223+35	185	62	83+27

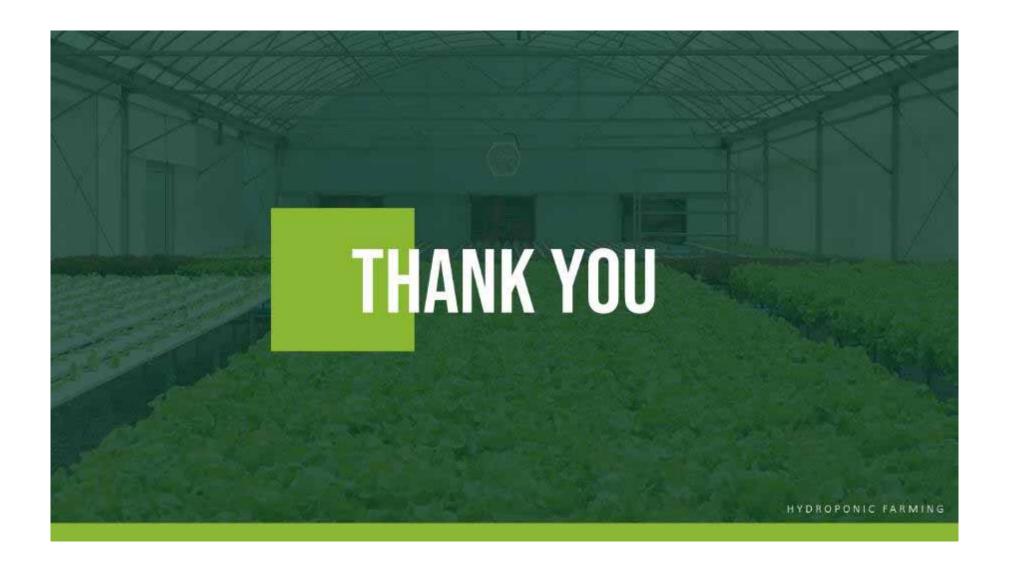
Stock	Compound	Amounts g/1.000 L
А	5Ca(NO ₃) ₂ .NH ₄ .NO ₃ .10H ₂ O	1000
В	MgSO ₄ .7H ₂ O	639
В	K ₂ SO ₄	147
A or B	KNO ₃	571
В	NH ₄ .H ₂ .PO ₄	125
В	KH ₂ PO ₄	123
А	Complete Micro Element	40

Diluted into 1000 liters of solution

Dissolved into 5 liters of solution per stock

Stock A 5 Liter Stock B 5 Liter

200 X


1000 L

Example:

If we need 600 liters of solution, the stock needed is:

600 Liter / 200 = 3 L of Stok A and 3 L of Stok B

Macro elements	Atomic weight
Nitrogen (N)	14.01 (14)
Phosphorus (P)	30.97 (31)
Potassium (K)	39.10 (39)
Calcium (Ca)	40.08 (40)
Magnesium (Mg)	24.31 (24)
Sulphur (S)	32.06 (32)
Oxygen (O)	16.00 (16)
Carbon (C)	12.01 (12)
Hydrogen (H)	1.008(1)
Micro elements	Atomic weight
Iron (Fe)	55.85 (56)
Boron (B)	10.81 (11)
Manganese (Mn)	54.94 (55)
Zinc (Zn)	65.37 (65)
Copper (Cu)	63.54 (64)
Molybdenum (Mo)	95.94 (96)
Chlorine (Cl)	35.45 (35)
Sodium (Na)	22.99 (23)

Macro and micro element atomic weight which is used in the calculation of hydroponic fertilizer requirements

P = 36%

Simple Hydroponics

